ISO TC 184/SC4/WG11 N117 Date: 2000-06-28
Supersedes ISO TC 184/SC4/WG11 N110

ISO/CD 10303-14
Product data representation and exchange — Description methods:

Part 14:
The EXPRESS-X Language Reference Manual

COPYRIGHT NOTICE: This SO document is aworking draft or committee draft and is copyright
protected by 1SO. While the reproduction of working drafts or committee drafts in any form for use
by Participantsin the | SO standards development processis permitted without prior permission from
I SO, Neither this document or any extract from it may be reproduced, stored or transmitted in any
form for any other purpose without prior written permission from 1SO

Requests for permission to reproduce this document for purposes of selling it should be addressed as
shown below (viathe 1ISO TC 184/SC4 Secretariat’s member body) or to 1SO’s member body in the
country of the requester.

Copyright Manager
ANSI
11 West 42nd Street
New York, New Y ork 10036
USA
phone: +1-212-642-4900
fax: +1-212-398-0023

ABSTRACT: This part of SO 10303 specifies a language by which relationships between data
defined by models in the EXPRESS language can be specified.

KEYWORDS: EXPRESS, Express-X, mapping language

COMMENTS TO READERS:
This part has been reviewed using the internal review checklist, the project |eader check list and the
convener check list, and has been determined to be ready for this ballot cycle

Project Leader: Martin Hardwick Project Editor: Peter Denno

Address: STEP Toals, Inc., Address: NIST,

216 River Street, 100 Bureau Drive,

Troy, NY, 12180 USA Gaithersburg, MD, 20878 USA
Telephone: +1-518-687-2848 Telephone: +1-301-975-3595
Telefacsimile: +1-518-687-4420 Telefacsimile: +1-301-975-4694
Electronic Mail: Hardwick@steptools.com Electronic Mail: peter.denno@nist.gov

ISO/CD 10303-14

©1s0

| SO/CD 10303-14:2000(E)

Contents Page
S o0 o< PR RPPPURPR 1
2 NOIMELIVE FEFEIENCES ...ttt bbb bbbt b e e sne e 2
3 DEFINITIONS ...t bbbttt b e bbb e nne e 2
31 Termsdefined in ISO 10303-1cccoiiiiiriiririerieeeeee e 2
3.2 Termsdefined in ISO 10303-11cooiiiiiriirerienieeeee e 2
3.3 Other defiNITIONSccoiiiirireeeeee et ae e 3

4 ConfOrmanCe rEQUITEMENTScceruertererereeeestessestessessesseeeessessessesbessessessesseensessesaeseesnesseas 4
4.1 Formal specifications written in EXPRESS-Xcccooiiiiininineseneeeeeesie e 4
421 LexiCal [anQUAGEccccoeiirierereriesieree ettt e 4

4.3 Implementations Of EXPRESS Xcccooiiiiiniiininineneseeeeee s 5
441 EXPRESS-X [anQUagE Parsercccereririeeieenieniesiesie s see s s sne s 5

452 EXPRESS-X MapPing EN0INEccccooiririirieieiesie e see s e s 5

4.6 CONfOrMANCE CIBSSESoiuiiuiriiriieieieie ettt st b e bt e et sn e b nne s 5

5 Language SPECITiCALION SYMEBXc.ccerueririeriertirierieseeeenee et s sse s se e s seesee b e s 6
6 BasiClanguage EleMENES ..ot 7
6.1 OVEIVIEW .ottt bbbttt e bbb bbbt et et e b e bbb 7
6.2 RESEIVE WOITS ...ttt ettt b ettt nb e e ne e 7

A = 5= 81/ 0T PP 8
A8 R @ Y/ V1= T U SPPPPR 8
A Y A 1= TV = = N Y oL RSP RR 8

8 Fundamental PriNCIPIESociiiiiiiiieiee et 9
8.1 OVEIVIEIW oottt bbbttt bbbt bt a e et et e e e e bbb ea e 9
8.2 TypographiCal CONVENTIONScccoiiriiriiriiniirieieie e 9
8.3 BINUING PIrOCESSocviiviiiiriieiieieie ettt sttt s e sa b e ens 11
8.4 Implementation ENVIFONMENTcccooiiiririiiricieee e 11

B D1 o == 1 o SRS PP 12
0.1 OVEIVIBIW ettt bbbt bbbt et e e e s et e e et e nrenns 12
S = 11 o [oo [T PR 12
9.3.1 Declaration of qualified binding eXtentscccovvererienieienese e 12

9.4.2 Identification of view and target iNStanCeScoocererererierieeiese e 14

9.5.3 Equivalence classes and the instantiation ProCesSceoeveereererenieneens 15

0.6 VIEBW GECIAIALION ...ttt bbb e 16
.71 OVEIVIBIW ..ottt ettt e b e b nreas 16

9.8.2 VIewW @triDULES ... 17

9.9.3 VIBW PAITITIONS ..ot snenre 18

9.10.4 CoNSLant PArtItiONSccovereereirierienieseeie et ae e sre e 19

0.11.5 REIUM VIBWS ...ttt nne s 19

9.12.6 SPECITYiNG SUDLYPE VIBWS ...c.eoveiiiiiiieiesiesie ettt 20

9.13.7 SUPERTYPE CONSIIAINTSecoveiiiriieieiesiesie et sne e 22

0.14 MaP dECIAraLIONcceevveieeriieieeieee et b s 22
O.15.1 OVEIVIBIW ..ottt e bttt b e e b nre s 22

| SO/CD 10303-14:2000(E)

9.16.2 Evauation of the MAPDOYccccoviiiriiiiiieeeeee e 23

9.17.3 lteration under asingle biNnding INSLANCEccccoerererenene e 24

9.184 Partitionswithin aMAP declarationcccocroiririeienenesesesesesenes 26

9.19.5 Mapping to an entity type and itS SUDLYPESccoeverererieieereresiesiees 27

9.20.6 Explicit declaration of complex entity datatypesc.ccoeererererenerennens 31

0.21.7 Dependent MEPccoeeriririeieieree ettt 32

0.22 Schema VIiew deClarationcccoceeveveereeieseese et s e e eee s 33
9.23 Schema map deClaralion ..o 34
.24 Creale UECIAIHONccccoiirieiirieeieee et 35
0.25 CoNStant AECIAILHIONcooveieiiiiriesie e 36
9.26 FUNCLION AECIAIELIONc.eoueiiiieie sttt st 36
9.27 Procedure deClaralioncooceoereriririnieee et 36
0.28 RUIEAECIAIALIONoveeieiieieeeeee ettt 36

1O EXPIESSIONSeoueiuiieiiesiesie sttt see st st see b bt ae e e e e e s s e b e st e e bt ebeebeese e e e e e e e e e nbeneeebenneas 37
LO.1 OVEIVIBW oottt b e bbbt a et et e et e e e bbb e b e naenne e 37
10.2 VIBW CAll ettt bbb 38
10.3 MAP Call oottt ne e 40
10.4 Partial BINAING CAlISccueiiiiieieeeeee e e 42
10.5 FOR EXPIESSION ...oovieiiiiieeiieiieiee e seeste s ste st sbeste s be st seese e e e e e tessesbesbesnesbesnesse e 42
(O | = o (=SS Lo o S SO 46
10.7 CASE BXPIESSION ...ooviiiriiieirieniieieeiee ettt e bbbt st e et et ss e bbb b saeese e 46
10.8 Forward Path OPEFEIONcocviieiierieriesiesie et 47
10.9 Backward path OPEIELOrcccceerieiieiieierie et 48

11 BUIt-INTUNCIIONS ...ttt sresne b nae s 50
11.1 Extent - general TUNCHIONocoiiiiiiiiiise et 50

12 SCOPE aNd VISIDHITY ...oveieeeiieieieeeee e 50
121 SCOPETUIES ...ttt bbb sae e 51
122 VISIDITY TUIES .ot 51
12.3 EXPHCITIEM TUIES ..ot 51
1241 OVEIVIEW ..ottt sttt sttt b bbb nneene e 51

1252 SCREMA VIBW ..ottt e ne e sne e 51

2 G TC TV 1= SRS 52

12.7.4 View partition 1aDel ... 52

12.85 View attribute identifier ... 52

13 INterface SPECITICALTIONocueiuieiieieieee ettt sbe s 52
131 OVEIVIEW oottt bbbt a et e e e et et e bbb et e b ne e 52
13.2 Thereferencelanguage Blementccoeviiirininienee e 53
Annex A (normative)lnformation object registration............ccoceeveiereresere e 54
Annex B (normative) EXPRESS-X 1aNguage SYNEaXccceeoeeieieieenienenieseesiesie e 55
= 30 R 0] (= TSSO 55
B.2 KEYWOITS ...ttt ettt b e bbb e 55
B.3 CharaCler ClaSSES.oiiiiiiiieee ettt 56

| SO/CD 10303-14:2000(E)

B.4 Interpreted identifiersS ..o e 56

B.5 Grammar FUIESooueiieiiese e bbb e 56

B.6 Cross referenCe liStNGoocooiieiiniiieeere ettt 63
Annex C (normative) EXPRESS-X to EXPRESS Tranformation Algorithmccccccceeee 67
Annex D (informative) Implementation CONCEIMS...........ccoererieriererene e 69
Annex E (informative) Path operator reference fuNClioNSccoceveviveneneneeieere e 71
=] o T TeTo r="o] V2SSOSR 71
0 > TP 72
Tables
Table 1-Additional EXPRESS-X KEYWOITScccccuiiriririeieieniesie st 8
Table 2-Operator PreCRUBNCEoii ittt ettt b e e sae e 37
Table 3-Scope and identifier definiNg ITEBMS ..o e 51

| SO/CD 10303-14:2000(E)

Vi

| SO/CD 10303-14:2000(E)

Foreword

I SO (the International Organization for Standardization) is aworldwide federation of national standards
bodies (1ISO member bodies). The work of preparing International Standards is normally carried out
through 1SO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International organi-
zations, governmental and non-governmental, in liaison with 1SO, aso take part in the work. 1SO col-
laborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies
for voting. Publication as an International Standard requires approval by at least 75 % of the member
bodies casting a vote.

International Standard 1SO 10303-14 was prepared by Technical Committee 1ISO/TC 184, Industrial
automation systems and integration, Subcommittee SC4, Industrial data.

A completelist of parts of 1SO 10303 is available from the Internet:
http://www.nist.gov/scd/editing/step/titles/

Annexes A, B and C form an integral part of this part of SO 10303. Annexes D and E are for informa-
tion only.

Vii

| SO/CD 10303-14:2000(E)

Viii

| SO/CD 10303-14:2000(E)

I ntroduction

ISO 10303 is an International Standard for the computer-interpretable representation and exchange of
product data. The objective is to provide a neutral mechanism capable of describing product data
throughout the life cycle of a product, independent from any particular system. The nature of this
description makesit suitable not only for neutral file exchange, but also as abasis for implementing and
sharing product databases and archiving.

This International Standard is organized as a series of parts, each published separately. The parts of SO
10303 fall into one of the following series: description methods, integrated resources, application inter-
preted constructs, application protocols, application modules, abstract test suites, implementation meth-
ods, and conformance testing. The series are described in 1SO 10303-1. This part of 1SO 10303 is a
member of the description methods series.

This part of 1SO 10303 specifies the Express-X mapping language. It is expected that readers of this
document understand the EXPRESS language, | SO 10303-11;1994 and 1 SO 10303-21;1994.

This specification provides industry with a means to document the relationship between information
represented in EXPRESS.

| SO/CD 10303-14:2000(E)

| SO/CD 10303-14:2000(E)

INTERNATIONAL STANDARD (1SO) ISO/CD 10303-14

Industrial automation systems and integration —
Product data representation and exchange —
Part 14.

Description methods: The EXPRESS-X |language
reference manual

1. Scope

This part of 1SO 10303 specifies a language by which relationships between data defined by modelsin
the EXPRESS language can be specified. The language is called EXPRESS-X.

EXPRESS-X is a structural data mapping language. It consists of language elements that allow an
unambiguous specification of the relationship between models.

The following are within the scope of this part of 1SO 10303:
— Mapping data defined by one EXPRESS model to data defined by another EXPRESS model.

— Mapping data defined by one version of an EXPRESS model to data defined by another version of
an EXPRESS model, where the two schemas have different names.

— Specification of requirements for data translators for data sharing and data exchange applications.
— Specification of alternate views of data defined by an EXPRESS model.
— An aternate notation for application protocol mapping tables.
— Bi-directional mappings where mathematically possible.
— Specification of constraints evaluated against data produced by mapping.
The following are outside the scope of this part of 1SO 10303:
— Mapping of data defined using means other than EXPRESS.
— ldentification of the version of an EXPRESS schema.

— Graphical representation of constructsin the EXPRESS-X language.

| SO/CD 10303-14:2000(E)

2. Normative references

The following normative documents contain provisions which, through reference in thistext, constitute
provisions of this part of 1SO 10303. For dated references, subsequent amendments to, or revisions of,
any of these publications do not apply. However, parties to agreements based on this part of 1SO 10303
are encouraged to investigate the possibility of applying the most recent editions of the normative doc-
uments indicated below. For undated references, the latest edition of the normative document referred
to applies. Members of 1SO and |EC maintain registers of currently valid International Standards.

SO 10303-1:1994, Industrial automation systems and integration — Product data representation and
exchange — Part 1: Overview and fundamental principles.

SO 10303-11:1994, Industrial automation systems and integration — Product data representation and
exchange — Part 11: Description methods: The EXPRESS language reference manual.

SO 10303-21:1994, Industrial automation systems and integration — Product data representation and
exchange — Part 11: Description methods: Clear text encoding of exchange structure.

3. Termsand Definitions

3.1 Termsdefined in 1SO 10303-1
For the purpose of this part of 1SO 10303, the following terms defined in 1SO 10303-1 apply:

— data;
— information;

— information model.

3.2 Termsdefined in 1SO 10303-11
For the purpose of this part of 1SO 10303, the following terms defined in 1SO 10303-11apply:

complex entity datatype;

complex entity (data type) instance;

constant;

entity;

| SO/CD 10303-14:2000(E)

— entity datatype;

— entity (datatype) instance;

— instance;

— partial complex entity datatype;

— partial complex entity value;

— population;

— simple entity (data type) instance;

— subtype/supertype graph;

— token;

— vaue.

3.3

Other definitions

For the purpose of this part of 1SO 10303, the following definitions apply:

331

3.3.2

333

3.34

335

3.3.6

3.3.7

338

339

binding extent: a set of binding instances constructed from instances in the source data sets and
view extents asidentified by the FROM language element of aview/map declaration.

binding instance: an element of a binding extent.

map: the declaration of a relationship between data of one or more source entity types or view
data types and data of one or more target entity types.

networ k mapping: a mapping to many target entity instances.

qualified binding extent: a subset of the binding extent consisting of only those binding
instances satisfying the selection criteria of the view/map declaration.

selection criteria: EXPRESS logical expressions used to identify the qualified binding extent
from a binding extent.

source data set: a collection of entity instances serving as an origin of mapping; each entity
instance conforms to an entity data type defined in the associated schema, and the collection
conforms to the constraints of the schema.

sour ce extent: aview extent or entity population drawn on to create a binding extent.

target data set: acollection of entity instances produced by means of mapping.

| SO/CD 10303-14:2000(E)

3.3.10 view: an aternative organization of the information in an EXPRESS model.
3.3.11 view datatype: the representation of aview.

3.3.12 view data type instance: anamed unit of information that is a member of the view extent estab-
lished by aview datatype.

3.3.13 view extent: an aggregate of view data type instances that contains all instances that can be con-
structed from the qualified binding extent.

4, Conformancerequirements

4.1 Formal specificationswritten in EXPRESS-X

4.1.1 Lexical language

A formal specification written in EXPRESS-X shall be consistent with agiven level as specified below.
A formal specification is consistent with a given level when all checks identified for that level as well
as al lower levels are verified for the specification.

L evels of checking

Level 1: Reference checking. Thislevel consists of checking the formal specification to ensure that
it is syntactically and referentially valid. A formal specification is syntactically valid if it matches
the syntax generated by expanding the primary syntax rule (synt ax) given in Annex A. A formal
specification is referentially valid if all references to EXPRESS-X items are consistent with the
scope and visibility rules defined in clause 12.

Level 2: Type checking. Thislevel consists of Level 1 checking and checking the formal specifica-
tion to ensure that it is consistent with the following:

— expressions shall comply with the rules specified in clause10 and in ISO 10303-11:1994
clause 12;

— assignments shall comply with the rules specified in 1SO 10303-11:1994 clause 13.3.

Level 3: Value checking. Thislevel consists of Level 2 checking and checking the formal specifica-
tion to ensure that it is consistent with statements of the form, ‘A shall be greater than B’, as speci-
fied in clause 7 to 14 of 1SO 10303-11:1994. Thisis limited to those places where both A and B can
be evaluated from literals and/or constants.

| SO/CD 10303-14:2000(E)

Level 4: Complete checking. This level consists of checking the formal specification to ensure that
it is consistent with all stated requirements as specified in this part of SO 10303 and of SO 10303-
11:1994.

4.2 Implementations of EXPRESS-X

42,1 EXPRESS-X language parser

An implementation of an EXPRESS-X language parser shall be able to parse any formal specification
written in EXPRESS-X consistent with the conformance class associated with that implementation. An
EXPRESS-X language parser shall be said to conform to a particular level of checking (as defined
in4.1.1) if it can apply all checks required by that level (and any level below it) to a formal specifica-
tion written in EXPRESS-X.

The implementor of an EXPRESS-X language parser shall state all constraints that the implementation
imposes on the number and length of identifiers, on the range of processed numbers, and on the maxi-
mum precision of real numbers. Such constraints shall be documented for the purpose of conformance
testing.

4.2.2 EXPRESS-X mapping engine

An implementation of an EXPRESS-X mapping engine shall be able to evaluate and/or execute any
formal specification written in EXPRESS-X, consistent with the conformance class associated with that
implementation. The execution and/or evaluation of a mapping is relative to one or more source data
sets; the specification of how these data sets are made available to the mapping engine is outside the
scope of this part of SO 10303.

The implementor of an EXPRESS-X mapping engine shall state any constraints that the implementa-
tion imposes on the number and length of identifiers, on the range of processed numbers, and on the
maximum precision of real numbers. Such constraints shall be documented for the purpose of conform-
ance testing.

4.3 Conformance classes

An implementation shall be said to conform to conformance class 1 if it processes all the declarations
that may appear in a SCHEMA_VIEW declaration.

An implementation shall be said to conform to conformance class 2 if it processes all the declarations
that may appear in a SCHEMA_MAP declaration.

| SO/CD 10303-14:2000(E)

An implementation shall be said to conform to conformance class 3 if it processes all the declarations
that may appear in this part of 1SO 10303.

5. Language specification syntax
The notation used to present the syntax of the EXPRESS-X language is defined in this clause.

The full syntax for the EXPRESS-X language is given in Annex A. Portions of those syntax rules are
reproduced in various clauses to illustrate the syntax of a particular statement. Those portions are not
always complete. It will sometimes be necessary to consult Annex A for the missing rules. The syntax
portions within this part of 1SO 10303 are presented in a box. Each rule within the syntax box has a
unigue number toward the left margin for use in cross-references to other syntax rules.

The syntax of EXPRESS-X is defined in a derivative of Wirth Syntax Notation (WSN).
NOTE — Seeannex B for areference describing Wirth Syntax Notation.

The notational conventions and WSN defined in itself are given below.

syntax= { production }

production= identifier '=' expression '.'
expression=term{ '|' term}

terne factor { factor }

factor= identifier | literal | group | option | repetition .
identifier= character { character }

literal="""" character { character }

group= " (
option='["' expression ']’

expression ')'

repetition="{'" expression '}’

— Theequal sign’ =" indicates a production. The element on the |eft is defined to be the combination
of the elements on the right. Any spaces appearing between the elements of a production are mean-
ingless unless they appear within aliteral. A production isterminated by aperiod' . ' .

— The use of an identifier within a factor denotes a nonterminal symbol that appears on the left side
of another production. An identifier is composed of letters, digits, and the underscore character. The
keywords of the language are represented by productions whose identifier is given in uppercase char-
actersonly.

— Theword literal is used to denote aterminal symbol that cannot be expanded further. A literal isa
sequence of characters enclosed in apostrophes. For an apostrophe to appear in aliteral it must be

| SO/CD 10303-14:2000(E)

written twice, i.e.,' ' "' .

— The semantics of the enclosing braces are defined below:
» curly brackets' { }' indicates zero or more repetitions;
» square brackets' []' indicates optiona parameters;

» parenthesis' ()' indicates that the group of productions enclosed by parenthesis shall be used
as asingle production;

» vertical bar' | ' indicates that exactly one of the termsin the expression shall be chosen.

The following notation is used to represent entire character sets and certain special characters which are
difficult to display:

— \ a represents any character from 1SO/IEC 10646-1;

— \ n represents a newline (system dependent) (see clause 7.1.5.2 of 1SO 10303-11:1994).

6. Basic language elements

6.1 Overview

This clause specifies the basic elements from which an EXPRESS-X mapping specification is com-
posed: the character set, remarks, symbols, reserved words, identifiers, and literals.

The basic language elements of EXPRESS-X are those of the EXPRESS language defined in Clause 7
of 1SO 10303-11, with the exceptions noted below.

6.2 Reserved words

The reserved words of EXPRESS-X are the keywords and the names of built-in constants, functions,
and procedures. Any reserved word in EXPRESS (1SO 10303-11:1994) shall also be areserved word in
EXPRESS-X. The reserved words shall not be used as identifiers. The additional reserved words of
EXPRESS-X are described below.

In the case that a legal EXPRESS identifier is a reserved word in EXPRESS-X, schemas using that
identifier can be mapped by renaming the conflicting identifier using the AS keyword in the REFER-
ENCE language element.

In addition to the keywords of EXPRESS defined in 1SO 10303-11:1994, the following are keywords
of EXPRESS-X.

| SO/CD 10303-14:2000(E)

Table 1: Additional EXPRESS-X keywords

END_SCHEMA_MAP EACH SCHEMA_MAP END_MAP
MAP END_SCHEMA_VIEW DEPENDENT_MAP END_VIEW
SOURCE IDENTIFIED_BY TARGET SCHEMA_VIEW
INDEXING PARTITION END_DEPENDENT_MAP VIEW

7. Datatypes

7.1 Overview
The data types defined here as well as those defined in the EXPRESS language (clause 8 of SO 10303-
11:1994) are provided as part of the language.

Every view attribute has an associated data type.

7.2 View datatype

View datatypes are established by view declarations (see clause 9.3). A view data type is assigned an
identifier in the defining schema map or schema view. The view data type is referenced by this identi-
fier.

Syntax:

229 view reference = [(schema_map_ref | schema_viewref) '.'] viewref

Rules and restrictions:
a) view_ref shall be areferenceto aview visiblein the current scope.

b) view_ref shall not refer to areturn view (clause 9.3.5).

EXAMPLE — following declaration defines aview data type named circle.

VIEW i rcl e;
FROM e : ellipse;
VWHERE (e.mj or_axis = e.mnor_axis);

SELECT
radius : REAL := e.ninor_axis;
center : point := e.center;
END VI EW

| SO/CD 10303-14: 2000(E)
8. Fundamental principles

8.1 Oveview

The reader of this document is assumed to be familiar with the following concepts, in addition to the
concepts described in clause 5 of 1SO 10303-11:1994.

EXPRESS-X provides for the specification of:
— differing views of the data described by an information model described in EXPRESS;

— the transformation of data described by elements of source EXPRESS models into data described
by elements of target EXPRESS models.

A SCHEMA_MAP provides declarations for the specification of the former and latter.

A SCHEMA_VI EW provides declarations for the specification of the former.
NOTE — A SCHEMA_VIEW may be transformed into an EXPRESS model as described in Annex B.

An EXPRESS-X schema may contain EXPRESS function and procedure specificationsin order to sup-
port the definition of views, maps, or type maps.

8.2 Typographical conventions

In this specification a binding instance is denoted as an ordered set of entity / view instance name sep-
arated by commas“,” and enclosed in angle brackets, “<>". Entity instance names are defined in 1ISO
standard 10303 part(21) clause 7.3.4. View instance names are specified using the same syntax.

EXAMPLE — Giventheview declaration:

VI EW exanpl e;
FROM p: person; o : organization;

END_VI EW
the following may be binding instances:

<#1, #31>
<#2, #32>.

These binding instances may correspond to the following data presented as entity instances as defined in
I SO standard 10303 part (21):

#l=person(' Janes',' ' Smth');
#2=person(' Fredrick',"'Jones');
#31=or gani zati on(' Engi neering');
#32=or gani zation(' Sal es');

| SO/CD 10303-14:2000(E)

In this specification the data referenced by a binding extent may be presented in tabular form where the
left-most column identifies the binding instance. The uppermost column headings, excluding the left-
most column, identify express entity types or view datatypes. The lower headings identify the names of
attributes corresponding to the entity identified in the uppermost column under which it falls, or when
the heading cell contains ‘#, the entity instance name.

EXAMPLE — This exampleillustrates the use of tables to depict a binding extent. The concept of a bind-
ing extent is defined in subsequent clauses and is not necessary to understand the example. The example
uses the data defined in example 2 and the following EXPRESS schema:

SCHEMA exanpl e_3;

ENTI TY person;
first_name : STRI NG
| ast _name : STRI NG

END _ENTI TY;

ENTI TY organi zati on;
departnent _nanme : STRI NG

END_ENTI TY,;

END_ SCHENMA,
Bi ndi ng person or gani zati on
I nstance

first_nane | ast _nane # depart nent _nane

<#1, #31> || #1 " James'’ "Smth' #31 ' Engi neering'
<#1, #32> || #1 " James' "Smth' #32 ' Sal es'
<#2, #31> || #2 "Fredrick' ' Jones' #31 ' Engi neering'
<#2, #32> || #2 "Fredrick' ' Jones’ #32 ' Sal es’

8.3 Binding process

This specification defines alanguage and an execution model. The execution model is composed of two
phases: a binding process and an instantiation process. The evaluation of views and maps share a com-
mon binding process but differ with respect to instantiation. A binding is an environment in which
variables are given values during the instantiation process. Each binding instance provides a set of val-
ues to be assigned to the variables. The relationship between bindings and the source data is defined in
subsequent clauses of this specification.

8.4 Implementation Environment

The EXPRESS-X language does not describe an implementation environment. In particular,
EXPRESS-X does not specify:

10

| SO/CD 10303-14:2000(E)

— how references to names are resolved;
— how input and output data sets are specified;

— how mappings are executed for instances that do not conform to an EXPRESS schema.

The evaluation of aview (i.e. the application of the view to a source data set) produces a view extent.
Evaluation of a map may produce entity instances in the target data set. EXPRESS-X does not specify
what effect modification of source data may have on views and maps after their evaluation.

9. Declarations

9.1 Overview

This clause defines the various declarations available in EXPRESS-X. An EXPRESS-X declaration
creates a new EXPRESS-X item and associates an identifier with it. The item may be referenced else-
where by thisidentifier.

EXPRESS-X provides the following declarations:
— View;

— Map;

Schema view;
— Schema_map;

In addition, an EXPRESS-X specification may contain the following declarations defined in
SO 10303-11:1994:

Constant;

Function;

Procedure;

— Rule.

11

| SO/CD 10303-14:2000(E)

9.2 Binding

9.2.1 Declaration of qualified binding extents

Syntax:
154 partition_header = [PARTITION partition_id ;] fromclause [
where_clause] [identified_by_clause]

A qualified binding extent is defined by identification and selection of binding instances.

The FROM language element defines the structure of instances in the binding extent. The FROM lan-
guage element consists of one or more source_parameter. Each source parameter associates identifiers
with an extent.

Syntax:
89 fromclause = FROM source_paraneter ';'{ source_paraneter ';"'} .
197 source_paranmeter = source_paranmeter_id ':' extent_reference .

Rules and restrictions:

a) source_paranet er _i dsshal be unique within the scope of the map or view declaration.

The binding extent is computed as the cartesian product of instances in the extents referenced in the
FROM language element.

EXAMPLE 1 — A binding extent is constructed over the entity extents of entity typesitem and person.

SCHEMA exampl e; -- An EXPRESS schenm
ENTITY item

item nunmber : | NTEGER,

approved_by : STRI NG
END_ENTI TY;

ENTI TY person;
nane : STRI NG

END_ENTI TY;

END_SCHEMA,;

VIEW i tens_and_persons

FROMi : item p : person;

SELECT
item nunber : INTEGER : = i.part_nunber;
responsible : STRING : = p.nane;

END_VI EW

12

| SO/CD 10303-14:2000(E)

Given a population (written as 1SO 10303-21 entity instances):
#l=item(123,' Smth');

#2=item(234,' Smth');

#33=person(' Jones');

#44=person(' Smth');

the corresponding binding extent is. <#1,#33>,<#1,#44> <#2 #33> <#2 #44>

The VWHERE language element defines a selection criteria on binding instances. The WHERE language
element, together with the source extents identified in the FROMIanguage element define the qualified
binding extent. A binding instance in the binding extent is a member of the qualified binding extent
unless one or more domain rule expressions of the WHERE |anguage element evaluates to FALSE for
the application of that expression to the binding instance.

The syntax of the WHERE language element is as defined in SO 10303-11;1994, clause 9.2.2.2.

EXAMPLE 2 — The qualified binding extent consists of those pairs of item and person of the binding
extent for which person.name is 'Smith' or 'Jones and item.approved by is 'Smith' or 'Jones and per-
son.name = item.approved_by.

VI EW it ens_and_persons;
FROMi : item p : person;
WHERE (p.nanme = "Smith') OR (p.name = 'Jones');
(i.approved_by = p.nane);
SELECT
name : STRING : = p. nane;
END_VI EW

the corresponding qualified binding extent is: <#1,#44> <#2 #44>,

9.2.2 ldentification of view and tar get instances

The | DENTI FI ED_BY declaration defines an equivalence relation between instances in a qualified
binding extent.

Syntax:

107 identified by _clause = | DENTI FI ED_BY expression { ',' expression } ';'

Rules and restrictions;

a) When used in amap declaration, an expr essi on inan IDENTIFIED_BY language element
shall not refer, through any level of indirection, to the targets of the map or any of their
attributes.

13

| SO/CD 10303-14:2000(E)

Two qualified binding instances are in the same equivalence class if, for each expression of the
IDENTIFIED_BY clause, evaluating the expression in the context of each of those instances produces
result that are instance equal (1SO 10303-11;1994 clause 12.2.2). The instantiation process produces
one view instance (views) or target network (maps) for each equivalence class.

EXAMPLE — Thisexampleillustrates the use of IDENTIFIED_BY .

VI EW depart nment ;
FROM e : enpl oyee;
| DENTI FI ED_BY e. depart nment _nane;
SELECT
name : STRING : = e. departnment _nane;
END_VI EW
ENTI TY enpl oyee;
name : STRI NG
departnent _nanme : STRI NG
END_ENTI TY;

END_VI EW

#1l=enpl oyee(' Jones', ' Engi neering');
#2=enpl oyee(' Smith',' Sales');
#3=enpl oyee(' Doe', "' Engi neering');

Given the view and population above, there are two equivalence classes: {#1,#3} and {#2}.

9.2.3 Equivalence classes and the instantiation process

View attributes (clause 9.3.2) and target entity attributes (clause 9.4.2) represent properties of the corre-
sponding view (view) and target network entities (map). These attributes are provided values by evalu-
ation of the corresponding expressions (view attr_assgnnt _expr in views)
(map_attr_assgnmnt _expr in maps). The expressions are evaluated in the context of a binding
instance in the qualified binding extent.

If an equivalence class defined by an IDENTIFIED_BY language element contains more than one qual-
ified binding instance, then the value of the view_attr_assgnmt_expression is computed as follows:

— If for each such binding, the evaluation of the vi ew_attr_assgnmt _expr (view) or
map_attr_assgnnt _expr (map) of the attribute produces an equal value, that value is assigned
to the attribute.

— If for two or more bindings, the evaluation of the view attr_assgnnt _expr or
map_attr_assgnmnt _expr of the attribute produces unequal values, the indeterminate value is
assigned to the attribute.

14

| SO/CD 10303-14:2000(E)

EXAMPLE — Thisexampleillustrates the assignment of values where an equivalence class contain more
than one qualified binding instance. The map declaration is described in clause 9.4.

(* source schema *)

SCHEMA src;

ENTI TY enpl oyee;
name : STRI NG
manager STRI NG,
dept STRI NG,

END_ENTI TY;

END_SCHEMA,

(* mappi ng schem *)
SCHEMA_NAP;

REFERENCE FROM src AS
REFERENCE FROM tar AS
MAP depart nent _map AS
FROM e : src.enpl oyee
| DENTI FI ED_BY e. dept;
SELECT

(* target schema *)

SCHEMA t ar;

ENTI TY depart nment;
enpl oyee : STRI NG
manager STRI NG,
nane : STRI NG

END_ENTI TY;

END_SCHEMA;
SOURCE;
TARGET,;

d : departnent

d. nanme : = e.dept;

d. manager := e.manager;

d. enpl oyee : = e. nane;
END_MAP;

END_SCHEMA_NMAP;

#l=enpl oyee(' Smth', ' Jones',' Marketing');
#2=enpl oyee(' Doe', ' Jones',' Marketing');

Given the data above the target data set contains one entity instance, #1=department(?,’ Jones,'Marketing’). The
attribute department.employee is indeterminate because the expression for this attribute evaluates to two different

values (‘Smith’ and 'Doe).

9.3 View declaration

9.3.1 Oveview

A view declaration creates a view data type and declares an identifier to refer to it.

15

SO/

CD 10303-14: 2000(E)

EXAMPLE — The following view defines a view data type

arm person_rol e_in_organi zati on.

VI EW ar m_person_rol e_i n_organi zati on;

FROM pao : person_and_organi zati on;
ccdpaoa : cc_design_person_and_organi zati on_assi gnment ;

WHERE ccdpaoa. assi gned_person_and_organi zati on : = pao;
SELECT
person : person := pao.the_person;
org : organi zation := pao.the_organi zai on;
role : label := ccdpaoa.role.nane;
END_VI EW
Syntax:
226 view decl = VIEWview_.id ':' base_type [supertype_rule] ';" (

154

228

vi ew_subt ype_of _cl ause subtype_partition_header view project_clause {
subtype_partition_header view project_clause }) | (
supertype_partition_header view project_clause {
supertype_partition_header view project_clause }) END VIEW' ;"'
partition_header = [PARTITION partition_id ;] fromclause [
where_clause] [identified_by_clause]

vi ew_project_clause = (SELECT view attr_decl _stnt_list) | (RETURN
expression)

Rules and restrictions:

a) If the view declaration specifiesavi ew_subt ype_of _cl ause, nofrom cl ause shall

be declared in any partition of the view declaration.

b) If the view declaration does not specify a view _subtype_of cl ause, the
from cl ause isrequired in every partition of the view declaration.

¢) Only areturn view, clause 9.3.5, shall specify abase typeinvi ew_decl .

9.3.2 View attributes

An attribute of aview data type represents a property of the view whose value is computed as the eval-

uatio

nof itsvi ew_at tr_assgnmnt _expr, an expression.

The name of a view attribute (vi ew_at tri but e_i d) represents the role played by it associated
value in the context of the view in which it appears.

16

| SO/CD 10303-14:2000(E)

Syntax:

228 view project_clause = (SELECT view attr_decl _stmt list) | (RETURN
expression)
224 view attr_decl _stnt _list = view attribute_decl { view attribute_decl }

222 view attribute_decl = view attribute_id ':" [OPTIONAL] [
source_schema_ref '.'] base_type ':=" expression ';'

Rules and restrictions;

a) Thevi ew attr_assgnnt _expr shal be assignment compatible with the data type of the
view attribute.

b) Each view_attribute id declared in the view declaration shall be unique within that declaration.

OPTIONAL indicates that the value of the attribute may be indeterminant. Use of OPTIONAL has no
effect on the execution model.

9.3.3 View partitions

A view extent may be partitioned. The extent of a view that is partitioned is the concatenation of the
extents defined by its partitions, each partition defining its own FROM language element and selection
criteria. Partitions, if present, shall be named. A parti ti on_i d namesa partition.

EXAMPLE — In ISO 10303-201, the application object or gani zati on may be mapped to either a
per son,anor gani zati on, or bothaper son_and_or gani zat i on entity inthe AIM. Thisis spec-
ified in EXPRESS-X asfollows:

VI EW ar m_or gani zati on;
PARTI TI ON a_si ngl e_per son;
FROM p : person;

PARTI TI ON a_si ngl e_or gani zati on;
FROM o: organi zati on;

PARTI TI ON a_person_i n_an_organi zati on;
FROM po: person_and_organi zati on;

END_VI EW

Syntax:
154 partition_header = [PARTITION partition_id ;] fromclause |
where_clause] [identified_by clause]

17

| SO/CD 10303-14:2000(E)

Rules and restrictions:

a) All partitions of a VI EWdeclaration shall define the same attributes (including names and
types)
b) The attributes of a VI EWdeclaration shall appear in the same order in each of its partitions.

9.3.4 Constant partitions

A partition that omits the FROM, WHERE, and IDENTIFIED_BY clauses is called a constant parti-
tion. Such a partition represents a single view instance in the result with no correspondence to the
source data.

EXAMPLE — Thisexampleillustrates the use of constant partitions.

VI EW per son;
PARTI TI ON mary;
SELECT
name : STRING : =" ry';
age : |INTEGER : = 22;
PARTI TI ON j ohn;
SELECT
nane : STRING := 'John';
age : |INTEGER : = 23;

END_VI EW

9.3.5 Return views

A vi ew_proj ect _cl ause defined as RETURN expr essi on computes avalue. The value shall
not be of type AGGREGATE. The value computed shall be type compatible with base_t ype.

Syntax:

226 view decl = VIEWview.id ':" base_type [supertype_rule] ";" (
vi ew_subt ype_of _cl ause subtype_partition_header view project_clause {
subtype_partition_header view project_clause }) | (
supertype_partition_header view project_clause {
supertype_partition_header view project_clause }) END VIEW" ;'

228 view project_clause = (SELECT view attr_decl _stm _list) | (RETURN
expression)

Rules and restrictions:
a) A return view shall not use the SELECT language element in any partition.

b) A return view shall not specify the view_subtype_of clause language element

18

| SO/CD 10303-14:2000(E)

If an equivalence class defined by an IDENTIFIED_BY language element contains more than one qual-
ified binding instance, then the value returned is computed as follows:

— If for each such binding, the RETURN expression produces an equal value, that value is returned.

— If for two or more bindings, the RETURN expression produces unequal values, the indeterminate
valueisreturned.

A return view does not define a new type.

EXAMPLE 1 — Thisexample definesinstances of type car that have the value 'red' in their color attribute.
VI EWred_car;

FROM rc: car;

WHERE rc.color ='red';

RETURN rc;
END VI EW
EXAMPLE 2 — This example defines an extent whose members are strings. The strings come from two
SOUrces.

VI EW owner _nane : STRI NG
PARTI TI ON one;
FROM po: person;
RETURN po. nane;
PARTI TI ON t wo;
FROM or: organi zati on;
RETURN or . nane;
END_VI EW

9.3.6 Specifying subtype views

EXPRESS-X allows for the specification of views as subtypes of other views, where a subtype view is
a specialization of its supertype. This establishes an inheritance (i.e., subtype/supertype) relationship
between the views in which the subtype inherits the properties (i.e., attributes and selection criteria) of
its supertype. A view is a subtype view if it contains a SUBTYPE declaration. The extent of a subtype
view isasubset of the extent of its supertype as defined by the selection criteria defined by the WHERE
language element in the subtype.

A subtype view inherits attributes from its supertype view(s). Inheritance of attributes shall adhere to
the rules and restrictions of attribute inheritance defined in 1SO 10303-11;1994 clause 9.2.3.3.

A subtype view declaration may redefine attributes found in one of its supertypes. The redefinition of
attributes shall adhere to the rules and restrictions of attribute redefinition defined in 1SO 10303-
11;1994 clause 9.2.3.4.

19

| SO/CD 10303-14:2000(E)

A view instance shall be created if the selection criteria of the most general supertype is satisfied. The
view instance shall have the type corresponding to a subtype view if all of the selection criteria condi-
tionsin the subtype view in addition to all of its supertype views evaluate to TRUE or UNKNOWN.

Syntax:

230 view subtype_of _clause = SUBTYPE OF ' (' view reference { ',
view reference } ')’

Rules and restrictions:

a) A view declaration shall contain either a FROM language element or a subtype language ele-
ment, but not both.

b) A subtype view shall not specify the IDENTIFIED_BY language element.
c) Exactly one supertype view of a subtype view shall define a FROM language element
d) The partitions of a subtype view shall be a subset of the partitions of its supertype view.

€) A subtype view shall not use the return language element.

EXAMPLE 1 — Thefollowing view illustrates subtyping. The view mal e defines an additional member-
ship requirement (gender = ‘ M) for view instances of the subtype.

VI EW per son;
FROM e: enpl oyee;
END_VI EW

VI EW mal e SUBTYPE OF (person);
WHERE e. gender = 'M;

END VI EW

EXAMPLE 2 — Thisexample illustrates the use of partitions and subtype views.
VIEW]| ;

PARTI TION first;

FROM s:three, t:four
VHERE cond6;

PARTI TI ON second;
FROM r:four, q:five
VWHERE cond7;

END VI EW

VI EW Kk SUBTYPE OF (j);
PARTI TI ON second;
VWHERE cond9;

END VI EW

Any subtype view for which ‘k’ is a supertype can only include partition ‘ second’.

20

| SO/CD 10303-14:2000(E)

9.3.7 SUPERTYPE constraints

A view declaration may define SUPERTY PE constraints (SO standard 10303 part (11) clause 9.2.4).
Whether or not a SUPERTY PE constraint is satisfied has no effect on the execution model or content of
view extents.

EXAMPLE —

VI EW a ABSTRACT SUPERTYPE OF ONEOF(b ANDOR c, d);

END VI EW

An instance of ‘a isvalid if it has at least two types (‘& and something else) because of the ABSTRACT

keyword, and one of the other typesis either ‘d’ or some combination of ‘b’ and ‘¢’ because of the ONEOF
keyword.

9.4 Map declaration

9.4.1 Oveview

The MAP declaration supports the specification of correspondence between semantically equivalent
elements of two or more EXPRESS models. The declaration supports the mapping from many source
entities to many target entities.

Syntax:

135 map_decl = MAP map_id AS target_paraneter ';'{ target_paraneter ';'} (
map_subt ype_of cl ause subtype_partition_header map_decl _body {
subtype_partition_header [map_decl _body] }) | (
supertype_partition_header [map_decl _body] {
supertype_partition_header map_decl _body }) END MAP ' ;'

154 partition_header = [PARTITION partition_id ;] fromclause |
where_clause] [identified_by clause]

136 map_decl _body = (entity_instantiation_loop {
entity instantiation_loop }) | map_project_clause | (RETURN expres-
sion ";").

211 target_paraneter = [target_paraneter_id { ',' target_paranmeter_id }

"] [AGGREGATE [bound_spec] OF] target_entity reference .

Rules and restrictions;

a) If the map declaration contains more than one map_partiti on, each map_partition
shall benamed by apartition_i d uniquewithinthe scope of the map declaration.

b) If a target_paraneter does not specify a target_paraneter_id, a
t arget _paranet er _i d isimplicitly defined and named asthet arget _entitiy_ref.

¢) A map declaration containing the map_subtype_of _clause shall not contain more than one par-

21

| SO/CD 10303-14:2000(E)

titions.

map_i d names a map declaration.

EXAMPLE — In the example below, a pump in the source data model is mapped to a product and
product_related product_category.
MAP networ k_for_punp AS pr : product;

prpc : product_rel ated_product _cat egory;
FROM p : punp;

SELECT
pr.id := p.id,
pr.name := p.nane,
prpc. name : = 'punp';

prpc. products :=[pr];

END_MAP;

Theinitial values of the attributes of the newly created instance(s) are indeterminate.

9.4.2 Evaluation of the MAP body

136

138

132

Syntax:

map_decl _body = (entity_instantiation_|loop {

entity_ instantiation_loop }) | map_project_clause | (RETURN expres-
sion ';").

map_proj ect _clause = SELECT map_attri bute_decl aration {

map_attri bute_declaration }

map_attri bute_declaration = [target_paraneter_ref [index_qualifier]
[group_qualifier] ".'] attribute_ref [index_qualifier] ':='
map_attr_assgnnt _expr ;'

A map_body specifying map_attri but e_decl ar at i ons shall assign values to the attributes of
the target entity instances. Themap_at t r _assgnmnt _expr shall produce avalue that is assignment
compatible with the target entity attribute (see |SO 10303-11;1994 clause 13.3).

A map_body specifying RETURN shall evaluate the expression which is specified after the RETURN
keyword. Evaluation shall result in the instantiation of target entity instances that are type compatible
with the entity types defined in the target_parameters.

22

| SO/CD 10303-14:2000(E)

9.4.3 Iteration under asingle binding instance

94.3.1 Oveview

Evaluation of a map may produce aggregates of target entity types. Theinitial value of the aggregateis
indeterminant.

Syntax:

104 target_paraneter = [target_paranmeter_id { ',' target_paraneter_id }
] [AGGREGATE [bound_spec] OF] target_entity_reference '

Rules and restrictions;

a) If bound_spec isspecified it istreated as a constraint.

Theinstanti ati on_| oop_control andrepeat _contr ol providestwo mutualy exclusive
forms of iteration: iteration over the collection of instances in an EXPRESS aggregate; and interaction

incrementing a numeric variable. The latter of these, provided by r epeat _contr ol isdescribedin
SO 10303-11; 1994.;

Syntax:

76 entity_instantiation_loop = FOR instantiation_|oop_contr ol
map_proj ect _cl ause .

117 instantiation_|loop_control = instantiation_foreach_control |
repeat _control
116 instantiation_foreach_control = EACH variable_id IN

source_attri bute_reference | NDEXING variable_id { variable_id IN
source_attribute_reference I NDEXING variable_id }

Rules and restrictions;

a) variable id after the keyword EACH is of the same type as the elements of
source_attribute_reference.

b) variable id after the keyword INDEXING is of type NUMBER with values greater than one.

9.4.3.2 Control by numericincrement

The FOR repeat control allows for the iteration under a single binding instance by means of the
EXPRESSr epeat _control .

23

| SO/CD 10303-14:2000(E)

EXAMPLE — Thisexampleillustrates the use of the EXPRESST epeat _cont r ol in Express-X target
instantiation. A collection of target child entity instances are created for each source parent entity. The num-
ber created is specified by the parent entity attribute number_of _children.

SCHEMA sour ce; SCHEMA t ar get ;
ENTI TY parent; ENTI TY parent;
nunmber of children : | NTECGER; END ENTI TY;
END _ENTI TY; ENTITY chil d;
END SCHEMA,; parent : parent;
END ENTI TY;
END_ SCHEMA;

SCHEMA_MAP exanpl e;
REFERENCE FROM src AS SOURCE;
REFERENCE FROM tar AS TARCET,;
MAP tp AS tar. parent;
FROM sp : src. parent;
END_MAP;

MAP children_map AS ¢ : AGGREGATE OF chil d;
FROM p : src.parent;

FOR i := 1 TO p.nunber_of _children
SELECT

c[i].parent := p;
END_MAP;

END_SCHEMA MAP;

9.4.3.3 Control by iteration over an aggregate

Under the i nstanti ati on_foreach_control, a each iteration step, the next element of the
source attribute is bound to a variable and optionally the index position of that element is bound to an
iterator variable. The scope of these variable bindingsincludesthe map_pr oj ect _cl ause.

24

EXAMPLE — Inthe following example, all item versions of one item are grouped together in the source
datamodel. In the target model, each item version is an instance.
ENTITY itemversion; --target data nodel
itemid . STRI NG,
version_id : STRI NG
END_ENTI TY,;
ENTITY itemw th _versions; -- source data nodel
id . STRI NG,
id_of _versions : LIST OF STRI NG
END_ENTI TY,;

| SO/CD 10303-14:2000(E)

MAP iv : AGCGREGATE OF item.version

FROMiw : itemwth_versions;

FOR EACH version_iterator OF iw.id_of _versions | NDEXI NG i

SELECT
iv[i].itemid
iv[i].version_id :

END_MAP;

For example, the following target instances are built from the source instance below.
Source instance set:

#1 = itemw th_versions(1,(10,11,12));
Target instance set:

iw.id;
version_iterator;

#1 = itemversion(1, 10);
#2 = itemversion(1,11);
#3 = itemversion(1,12);
An instantiation_foreach_control language element may specify many

source_attribute_references usingtheoptional AND syntax. Iteration continues while at
least one source aggregate is not exhausted. The indeterminate value is assigned to the variable_id of
exhausted aggregates.

9.4.4 Partitionswithin a MAP declaration

The instances of an entity type may each relate differently to source data. Multiple map partitions may
be used to specify these differing relations.

If multiple target entities are listed in the header of the MAP declaration, different subsets of those enti-
ties may be created by each partition.

Syntax:

206 supertype_partition_header = [PARTITION partition_id ";"]
fromclause [where_clause] [identified_by clause].

Rules and restrictions;

a) Thepartition_id shal beunique with respect to the inheritance hierarchy of the corre-
sponding target entity.

b) For every target entity declared in the map header, at least one partition shall be defined to cre-
ate instances for it.

25

| SO/CD 10303-14:2000(E)

EXAMPLE — Thisexampleillustrates how various source entity types may be mapped into asingle target
entity type using a MAP declaration containing partitions.

(* source schema *) (* target schema *)
SCHEMA sr c; SCHEMA t ar;
ENTI TY student; ENTI TY person;
nane . STRI NG nane : STRI NG

END_ENTI TY; END_ENTI TY;
ENTI TY enpl oyee; END SCHENA,

name : STRI NG
END_ENTI TY;
END_SCHEMA,;

(* mapping schema *)
SCHEMA_MAP exanpl e;
REFERENCE FROM src AS SOURCE;
REFERENCE FROM tar AS TARCET;
MAP student _enpl oyee_to_person AS p : tar.person;
PARTI TI ON st udent ;
FROM s : src.student;
SELECT

p. nane := s.nane;
PARTI TI ON enpl oyee;
FROM e : src. enpl oyee;
SELECT

p. nane : = e.nane;
END_MAP;

9.45 Mappingto an entity type and its subtypes

EXPRESS-X allows for the specification of a map as a subtype of another map. Subtype map declara-
tions may extend the collection of entity instances created by its supertype map, speciaize those
instances created and require additional selection criteria beyond those specified in the supertype map.
The specification of atarget attribute assignment declared in a supertype map isinherited by its subtype
maps. Through these means, the pattern of inheritance present in the target schema can be duplicated in
the mapping declarations.

Syntax:

141 map_subtype_of clause = SUBTYPE OF ' (' map_reference ")"' ' ;'

Whether a subtype map extends the collection of entity instances created by its supertype map or spe-
cidizes those instance created depends on whether the subtype map references
target _paraneter_ids declared in the supertype map or whether it declare its own
target _paraneter_ids

26

| SO/CD 10303-14:2000(E)

— If amap’s selection criteria and that of all its supertype mapsis satisfied, the map shall execute.

— A subtype map may reference a t ar get _par anet er _i d that is declared in any of its super-
type maps. The type created is the composition of typesidentified by the subtype map target parame-
ter and all supertype maps declaring atarget parameter with this target parameter id.

— A subtype map may introduce at ar get _par anet er _i d that is not defined in any of the
supertype maps. In this case, a new target entity of the type defined by the target parameter is created.

A subtype map may reference for assignment a target attribute referenced for assignment in one of its
supertypes (through possibly several levels of single inheritance). In this case, the target attribute is
assigned the value corresponding to map_attr _assgnnnt _expr of the most specialized map for
which the selection criteria and selection criteria of its supertypes is satisfied.

The type combination must be valid in the target schema.

A subtype map shall have exactly one direct supertype map.

NOTE — Multiple inheritance (i.e. a subtype map having more than one direct supertype map) is prohib-
ited.

EXAMPLE — This example illustrates assignment to attributes declared in supertypes and subtypes
through supertype and subtype maps. Source entities are of one type, s_pr oj ect . Target entities are of
typet _proj ect and perhaps one of its subtypes, i n_house_proj ect and ext ernal _proj ect.
The target_parameter_id, t p, used in the supertype map (project_map) is used again in its subtype maps
(in_house_map, ext_map) signifying that the corresponding target entity is specialized in the subtype maps.

SCHEMA source_schemms;

ENTI TY s_proj ect;
name : STRI NG
project_type : STRI NG
cost : | NTEGER;
price : | NTECER,
vendor : STRI NG

END _ENTI TY;

END_SCHEMA;

27

| SO/CD 10303-14:2000(E)

SCHEMA t ar get _schens,;

ENTI TY t _proj ect;

SUPERTYPE OF (ONECF (in_house_project, external _project));
name : STRI NG

cost : | NTEGER;
managenment : STRING
END_ENTI TY,;

ENTI TY i n_house_proj ect;

SUBTYPE OF (t_project);

END_ENTI TY;

ENTI TY external _project;

SUBTYPE OF (t_project)
price : | NTEGER,

END_ENTI TY;

END_SCHEMA;

SCHEMA_MAP exanpl e;

REFERENCE FROM source_schema AS SOURCE;
REFERENCE FROM t arget _schema AS TARCET,;

MAP project_map AS tp : target_schema.t_project;
FROM p : source_schena.s_project;

SELECT
tp. name := p.nane;
tp.cost := p.cost;
END_MAP;

MAP i n_house_map AS tp : target_schema.in_house_project;
SUBTYPE OF (project_map);

WHERE (p.project_type = 'in house’);
SELECT
t p. managenent := | F (cost < 50000) THEN 'small accts’

ELSE 'l arge accts’ END_IF;
END_MAP;

MAP ext _map AS tp : target_schena. external _project;
SUBTYPE OF (project_map);
WHERE (p.project_type = 'external’);

SELECT

tp.price := p.price,

t p. managenent := p.vendor;
END_MAP;

A supertype map may define entity instantiation loops. A subtype map of such a supertype map shall
inherit these instantiation loops. The correspondence between supertype map bodies and subtype map
bodies where instantiation loops is made through use of identical index identifiers. The map body of the
subtype map inheriting a loop shall reference the identical index identifier as defined in its supertype

map.

28

| SO/CD 10303-14:2000(E)

EXAMPLE — Thisexampleillustrates the inheritance of an entity instantiation loop.

SCHEMA source_schemms;
ENTITY part;
name : STRI NG
no_of versions : | NTEGER
is_assenbly : BOOLEAN,
END _ENTI TY;
END_SCHEMA,;

ENTI TY target_schenms;
ENTI TY product;

name : STRI NG
END_ENTI TY;

ENTI TY product _versi on;
version_id : | NTEGER,
of _product : product;
END_ENTI TY;
ENTI TY product _vi ew,
name : STRI NG
of _version : product_version;
END_ENTI TY;

ENTI TY assenbly_vi ew
SUBTYPE OF (product_view);
END_ENTI TY;

END_SCHEMA,;

SCHEMA_MAP exanpl e;

REFERENCE FROM source_schema AS SOURCE;
REFERENCE FROM t ar get _schema AS TARCET,;

29

| SO/CD 10303-14:2000(E)

MAP super _map AS

pvw : AGCREGATE OF product _view,
pver : AGGREGATE OF product_versi on;
pro . product;

FROM prt : part;

FORi := 1 TO no_of _versions;

SELECT

pver[i].version_id :=i;

pver[i].of _product p;

pvwii].of version := pver[i];

pvwii].name := 'view of part ' + pro.nane;
SELECT

pro.nanme := 'part ' + part.nane,
END_MAP;

MAP sub_map SUBTYPE OF (super_map)

pvw . AGCGREGATE OF assenbly_view,
pver : AGGREGATE OF product _versi on;
pro . product;
VHERE
p.is_assenbl ed = TRUE;
SELECT
pvwi].name := 'view of assenmbly ' + p.nane;
SELECT
p.nanme := "assenbly ' + part.nane;
END_MAP;

END_SCHEMA_MAP;

9.4.6 Explicit declaration of complex entity data types

Complex entity data types (see 1SO 10303-11:1994, clause 3.2.1) may be explicitly declared in the map
header. A complex entity data type is referenced by an expression that lists the partial complex entity
data types that are combined to form it, separated by ‘&’.

The partial complex entity data types may be listed in any order.

Any partial complex entity data types that are included in another partial complex entity data type via
inheritance shall not be listed.

Syntax:

211 target_paraneter = [target_paraneter_id { ',' target_paranmeter_id }
"] [AGGREGATE [bound_spec] OF] target_entity reference .
210 target_entity reference = entity_reference { '& entity_reference } .
77 entity_reference = [(source_schema_ref | target_schema_ref |
schema_ref) ".'] entity_ref

30

| SO/CD 10303-14:2000(E)

Rules and restrictions;

94.

a) Each entity_ref shall be areference to an entity which isvisible in the current scope.

b) Thereferenced complex entity datatype shall describe avalid domain within some schema (see
SO 10303-11:1994, annex B).

c) A given entity_ref shall occur at most once within a complex_entity _ref.

d) For each entity_reference declared in the complex_entity _spec, none of its supertype shall be
declared.

7 Dependent map

A dependent map is amap that executes only when called as an explicit binding. A dependent map may
have a simple type as a source parameter.

Syntax:

66 dependent_map_decl = DEPENDENT_MAP nmap_id AS target_parameter ';' {
target _parameter ';' } [map_subtype_of clause] dep_map_partition {
dep_map_partition } END_DEPENDENT_MAP ' ;'

70 dep_map_partition = [PARTITION partition_id ':"'] dep_map_decl _body

71 dep_map_decl _body = dep_bi ndi ng_decl nmap_project_cl ause .

72 dep_bi ndi ng_decl = dep_fromcl ause [where_cl ause]

[identified_by clause]

73 dep_fromclause = FROM dep_source_paraneter ';' { dep_source_paraneter
B

71 dep_source_paraneter = source_paraneter_id { ',' source_paraneter_id}
"' (sinple_types | type_reference)

Rules and restrictions;

a) If more than one partition exists, a partition_id shall be provided for each partition.

b) Partition_ids shall be unique within the scope of the dependent_map.

EXAMPLE —

This example illustrates the use of a dependent map to instantiate target organization instances having
unique id attributes. The call to the dependent map ensures organizations in the target population have
unique id attributes.

31

| SO/CD 10303-14:2000(E)

MAP uni que_orgs_map AS organi zati on;
PARTI TI ON a_org;
FROM a : named_organi zati on;
RETURN or g_map(a. nane);
PARTI TI ON b_org;
FROM b : id_organi zation;
RETURN org_map(b.id);
END_MAP;

DEPENDENT_MAP org_map AS org : organi zation;
FROM id : STRI NG
SELECT
org.id :=id,
END_DEPENDENT_MAP;

9.5 Schema view declaration

A schema_view declaration defines a common scope for a collection of related mapping declarations. A
schema._view may contain the following kinds of declarations:

— constant declaration ();

function declaration (clause 9.6);

procedure declaration (clause 9.7);

rule declarations (clause 9.11);

view declaration (clause 9.3).
The order in which declarations appear within a schema_view declaration is not significant.

Declarations in one schema view or EXPRESS schema may be made visible within the scope of
another schema_view via an interface specification as described in clause 13.

Syntax:

187 schema_vi ew decl = SCHEMA VIEW schema_view id { reference_cl ause } [
constant _decl] schema_view body_el ement |ist END SCHEMA VIEW' ;'

166 reference_cl ause = REFERENCE FROM scherma_ref_or_renane [' ('
resource_or_renanme { '," resource_or_renanme } ')'] [AS(SOURCE | TAR-
Gemn) 1

186 schema_vi ew _body_el enment _|ist = schema_vi ew_body_el ement {
schema_vi ew_body_el ement }

185 schenma_vi ew _body_el ement = function_decl | procedure_decl | view decl
| rul e_decl

32

| SO/CD 10303-14:2000(E)

Rules and restrictions;

9.6

a) Thesyntax AS (SOURCE | TARGET) shall not be used in aschema view_decl.

EXAMPLE — ap203_arm names a schema view that may contain declarations defining a view over the
schema config_control_design in terms of the domain expert’s understanding of the information require-
ments.

SCHEMA VI EW ap203_arm

REFERENCE FROM config_control _design;
VI EW part _version ...

(* other declarations as appropriate *)
END_SCHEMA VI EW

Schema_map declaration

A schema_map declaration defines a common scope for a collection of related mapping declarations.

A schenma_nmap may contain the following kinds of declarations:

constant declaration (clause 9.5);
function declaration (clause 9.6);
procedure declaration (clause 9.7);
view declaration (clause 9.3);

map declaration (clause 9.4);

rule declaration (clause 9.11).

The order in which declarations appear within aschenma_nmap declaration is not significant.

Declarationsin one schema_map may be made visible within the scope of another schema_map via

anin

terface specification as described in clause 13.2.3

Syn

182

221

180

tax:

schema_map_decl = SCHEMA MAP schema_map_i d reference_cl ause {
reference_clause } [constant_decl] schema_map_body_el ement _|i st
END_SCHEMA MAP ' ;'

type_mappi ng_stm = TYPE_MAP type_reference FROM type_reference ' ;'
type_map_stmt _body type_nap_stnt_body END TYPE MAP ' ;'
schema_map_body_el ement = function_decl | procedure_decl | view decl |
map_decl | dependent _nmap_decl | create_map_decl | rul e_decl

33

| SO/CD 10303-14:2000(E)

Rules and restrictions:

a) Thescherma_map shall include explicitly or by import, at least one MAP declaration.

EXAMPLE 1 — i ges2st ep namesaschema_nmap that may contain declarations for translating geom-
etry defined using an EXPRESS model base upon IGES into a model based on SO 10303-203.

SCHEMA_MAP i ges2st ep;

REFERENCE FROM st ep_schenma AS TARGET;
REFERENCE FROM i ges_express_schema AS SOURCE;
MAP i ges_structure ...

(* other declarations as appropriate *)
END_SCHEMA MAP;

A schema map may reference EXPRESS schema, other schema map schema and schema view
schema through use of ther ef er ence_cl ause language element. See clause 13.2.

182

166

184

Syntax:

schema_map_decl = SCHEMA MAP schema_map_id reference_cl ause {
reference_clause } [constant_decl] schema_map_body_el enent _|i st
END_SCHEMA MAP ' ;'

reference_cl ause = REFERENCE FROM schema_ref _or_renanme [' ('
resource_or_renanme { '," resource_or_renane } ')'] [AS(SOURCE | TAR-
GET)] '

schema_ref _or_renane = [general _schema_alias_id ':']

general _schema_r ef

Rules and restrictions:

a) A schema_map shall reference at least one EXPRESS schema designated as a mapping source

using the AS SOURCE syntax.

b) A schema _map shall reference at least one EXPRESS schema designated as a mapping target

using the AS TARGET syntax.

EXAMPLE 2 — This example illustrates the designation of source and target EXPRESS schema.
EXPRESS schematl isreferenced as the target of mapping. EXPRESS schema schema_source_oneisrefer-
enced as the source of mapping; it may be referred to as s1 within the scope of this schema_map.

SCHEMA_MAP map_nane;

REFERENCE FROM t1 AS TARGET;
REFERENCE FROM s1 : schema_source_one AS SOURCE;

END_SCHEMA_MAP;

34

| SO/CD 10303-14:2000(E)

9.7 Createdeclaration

The CREATE declaration defines the form of an entity that, subject to alogical expression, shall be cre-
ated in the target data set. The | ogi cal _expr essi on is evaluated against entity extents identified
inthetarget _entity_reference.If thel ogi cal _expressi on evaluatesto TRUE or if no
| ogi cal _expression is specified, an entity shall be created in the target data set. If the
logical_expression evaluates to the indeterminate value, the behaviour is undefined.

Syntax:
64 create_map_decl = CREATE instance_id ':' target_entity_reference ";' |
WHERE | ogi cal _expression ';'] map_attri bute_declaration {
map_attri bute_decl aration } END CREATE ';'

Rules and restrictions:
a) | ogi cal _expressi on shal evaluate to either aLOGQ CAL value or indeterminate.
b) target _entity_reference shal refer to entity identifiers defined in atarget schema.
c) Attributereferencesof themap_at t ri but e_decl ar at i on shall refer to attributes of enti-

tiesidentified inthet ar get _entity_reference.

EXAMPLE — Inthefollowing, an instance of application_context is created in the target data set provided
that the entity extent of i t em(an entity type in a source schema) contains at least one instance.

CREATE APPCNT | NSTANCE_OF applicati on_cont ext
VWHERE SI ZEOF(EXTENT(item) > O;

application : = ;
END_CREATE;

9.8 Constant declaration

Constants may be defined for use within the WHERE language element of a view or map declaration,
or within the body of a map declaration or algorithm.

Constant declarations are as defined in 1SO 10303-11:1994 clause 9.4.

9.9 Function declaration

Functions may be defined for use within the WHERE language element of a view or map declaration,
or within the body of a map declaration.

Function declarations are as defined in SO 10303-11:1994 clause 9.5.1.

35

| SO/CD 10303-14:2000(E)

9.10 Proceduredeclaration
Procedures may be defined for use within the body of a map declaration.

Procedure declarations are as defined in SO 10303-11:1994 clause 9.5.2.

9.11 Ruledeclaration
Rules may be defined for use within the SCHEMA_VIEW and SCHEMA _MAP language element.

Rule declarations are as defined in 1SO 10303-11:1994 clause 9.6.

10. Expressions

10.1 Overview

Expressions are combinations of operators, operands, and function calls that are evaluated to produce a
value.

The built-in function defined in Clause 15 and the operators defined in clause 12 of 1SO 10303-11;
1994 apply to this specification. Arguments of type view shall be treated as arguments of type entity.
The relationship between view definitions and entity definitionsis defined in annex B.

Syntax:

80 expression = sinple_expression [rel_op_extended sinpl e_expression]
168 rel _op_extended =rel_op | IN| LIKE .

167 rel _op ="'< | ' >" | '"<= | " o>=" | "< | = | it] =
191 sinple_expression = term{ add_like_op term}

214 term= factor { multiplication_like_op factor }

83 factor = sinple_factor ['**' sinple_factor]

192 sinmple_factor = aggregate_initializer | entity_constructor |

enuneration_reference | interval | query_expression | ([unary_op]
("(' expression ') | primary)) | case_expr | for_expr

157 primary = literal | (qualifiable_factor { qualifier })

162 qualifiable factor = attribute_ref | constant_factor | function_call |
popul ation | general _or_map_call | view.call | view attribute_ref

Evaluation of an expression is governed by the precedence of the operators which form part of the
expression. Expressions enclosed by parentheses are evaluated before being treated as a single operand.

36

| SO/CD 10303-14:2000(E)

Evaluation proceeds from left to right, with the highest precedence being evaluated first. Table 2 speci-
fies the precedence rules for all of the operators of Express-X . Operators in the same row have the
same precedence, and the rows are ordered by decreasing precedence. An operand between two opera-
tors of different precedence is bound to the operator with the higher precedence. An operand between
two operators of the same precedence is bound to the one on the left.

Table 2: Operator precedence

Precedence Descri ption Operators
1 Conmponent Ref erence [1 .\ < {3
2 Unary Operatators + - NOT
3 Exponenti ati on **
4 Mul tiplication/Division / * DIV MOD AND | |
5 Addi tion/ Subtraction + - OR XOR
6 Rel ati onal = <> <= >= < > := :<> |NLIKE

Entity constructors create instances that are local only to the function or procedure in which they are
used. Instances produced by entity constructors shall not create target nor source populations.

10.2 View call

A view call is an expression that evaluates to a view instance or aggregate of view instances. The view
call provides a means to access a view instance through arguments corresponding to its binding
instance (when no IDENTIFIED_BY is defined) or IDENTIFIED_BY language element expressions
(when IDENTIFIED_BY is defined). If no view instance corresponds, the call evaluates to indetermi-
nate. A view call identifies a single partition of a view; if the view contains more than one partition, a
partition_qualification shall be present. When no IDENTIFIED_BY language element is present in the
partition, the number, type, and order of the actual parameters shall agree with that of the source param-
eters of the FROM language element in the partition. When an IDENTIFIED_BY language element is
present, the number, type and order of the actual parameters shall agree with that of the expressions of
the IDENTIFIED_BY language el ement.

A view call referencing a constant partition shall be passed an empty parameter list.

37

| SO/CD 10303-14:2000(E)

Syntax:

225 view call = viewreference [partition_qualification] ' ('
expression_or_wild { '," expression_or wild} ")’

157 partition_qualification = '\' partition_ref

81 expression_or_wld = expression |

EXAMPLE — This example illustrates the use of a view call to define a relationship between two view
datatypes. The IDENTIFIED_BY language element in the person_view specifies one expression, a. cr e-
at or ; view callsto person_view will therefore be supplied with one argument, a STRING which is also the
creator attribute of an approval entity instance. The IDENTIFIED_BY clause in this view also serves to
ensure the uniqueness of person_view instances (i.e. no two view instances will have the same name
attribute).

SCHEMA VI EW exanpl e;
VI EW approver
PARTI TI ON person_part;
FROM a : approval; p : person;
WHERE a. creator = p.nane;
| DENTI FI ED_BY a. creat or;
SELECT
approver _id : INTEGER := p.id;
PARTI TI ON org_part;
FROM a : approval; o : organization
WHERE a. creator = 0.nane;
| DENTI FI ED_BY a. creat or;
SELECT
approver _id : INTEGER := o0.id;
END_VI EW

VI EW desi gn_or der;
FROM a : approval;
SELECT
id: STRING := a.id;
approved_by : approver : =
approver\person_part(a.creator);
END_VI EW
END_SCHEMA VI EW

38

| SO/CD 10303-14:2000(E)

SCHEMA src_schemms;
ENTI TY approval ;

id: STRING

creator : STRING
END_ENTI TY;
ENTI TY person;

name : STRI NG

id: | NTEGER;
END_ENTI TY;
END_SCHEMA,
(* Source data set in |1SO 10303-21 form*)
#l=approval ('a_1',"' Jones');
#2=approval ('a_2',"'Smth');
#3=approval ('a_3","' Jones');
#4=person(' Jones', 123);
#5=person(' Smth', 234);

(* Resulting view instances in |SO 10303-21 form *)
#101=approver (123);

#102=appr over (234);

#103=desi gn_order('a_1', #101);

#104=desi gn_order (' a_2', #102);

#105=desi gn_order (' a_3', #101);

If one or more of the actual parameters is EXPRESS-X wildcard, ' ', the result of the view call is an
AGGREGATE containing those view instances of the view extent that correspond to the non-wildcard
parameter values provided. If no view instances correspond, the view call evaluates to indeterminate.

EXAMPLE — Inthefollowing, the various versions associated with a part are collected by using a partial
explicit binding. Returned by the explicit binding call version_and_its product is the subset of the extent for
which the second component of the binding is equal to the specified product instance.

VI EW part;
FROM (p : product)
SELECT
versions : SET OF version_and_its_product
= version_and_its_product(_, p);
END_VI EW

10.3 Map call

A map call is an expression that evaluates to a target entity instance. A map call identifies a single par-
tition of a map; if the map contains more than one partition, a partition_qualification shall be present.
When no IDENTIFIED_BY language element is present in the partition or when the call isto a depen-
dent map, the number, type, and order of the actual parameters shall agree with that of the source
parameters of the FROM language element in the partition. When an IDENTIFIED_BY language ele-

39

| SO/CD 10303-14:2000(E)

ment is present an the call is not to a dependent map, the number, type and order of the actual parame-
ters shall agree with that of the expressions of the IDENTIFIED_BY language element.

Syntax:

100 general _or_map_call = general _ref ['@ map_call]

134 map_call = map_ref [partition_qualification] '(' expression_or_wld {
',' expression_or wild} ")’

157 partition_qualification = '\' partition_ref

Rules and restrictions:

a) target _paraneter_ref shal refer to a parameter reference declared in the MAP refer-
enced asmap_r ef .

b) If the map declaration referenced by the map call declares more than one target parameter (i.e.

it is a network map) the gener al _r ef @syntax shall be used to identify the target entity to
be returned by the map call.

EXAMPLE — Thisexampleillustrates the use of amap call to define arelationship between entitiesin the
target schema.

(* source schema *)

SCHEMA src;

ENTI TY approval ;
id: STRING
creator : STRING

END_ENTI TY;

END_SCHEMA;

SCHEMA t ar;

ENTI TY person;
id: STRI NG

END ENTI TY;

40

| SO/CD 10303-14:2000(E)

ENTI TY desi gn_order;
id: STRING
approved_by : person;

END_ENTI TY;

END_SCHEMA;

SCHEMA_MAP exanpl e;
REFERENCE FROM src AS SOURCE;
REFERENCE FROM tar AS TARGCET;
MAP person_map AS p : target. person;
FROM a : approval
| DENTI FI ED_BY a. creat or
SELECT
p.id := a.creator;
END_MAP;

MAP design_order_map AS d : target.design_order;
FROM a : approval

SELECT

did:= a.id;

d. approved_by : = p@erson_map(a.creator); -- map call
END_MAP;

END_SCHEMA MAP;

(* source instance set witten as |1SO 10303-21 instances *)

#1 = approval ("a_1l ,'’mller’);
#2 = approval ('a_2',’jones’);
#3 = approval ("a_3 ,'nmller’);

(* Resulting target instances in |SO 10303-21 form *)
#101=person(‘Jones’);

#102=person(‘*Smth');

#103=desi gn_order(‘a_1", #101);

#104=desi gn_order(‘a_2’, #102);

#105=desi gn_order(‘a_3", #101);

10.4 Partial binding calls

A partial binding call is an view or map call in which one or more of the parametersisthe EXPRESS-X
wildcard'_". The result of a partial binding call isan AGGREGATE that is the subset of the extent that
matches the non-wildcard parameter values that are provided. If the subset is empty, the result of the
partial binding call shall be indeterminate.

Partial binding calls to dependent maps are not permitted.

41

| SO/CD 10303-14:2000(E)

EXAMPLE — Inthefollowing, the various versions associated with a part are collected by using a partial
explicit binding. Returned by the explicit binding call version_and_its product is the subset of the extent for
which the second component of the binding is equal to the specified product instance.

VI EW part;
FROM p : product;
SELECT
versions : SET OF version_and_its_product
= version_and_its_product(_, p);
END_VI EW

VI EW version_and_its_product;
FROM (pdf : product_definition_formation, p : product)

WHERE p :=: pdf.of _product;
SELECT

the_version : product_definition_formation := pdf;
END_VI EW

10.5 FOR expression

The FOR expression collects the result of iteration of an expression over the elements of an EXPRESS
aggregate. The iteration mechanism allows each element of the aggregate to be evaluated against a
selection criteria. The collection is returned as an EXPRESS aggregate data type.

Syntax:

88 for_expr = FOR (foreach_expr | forloop_expr)

84 foreach_expr = EACH variable_id IN expression { AND variable_id IN
expression } [where_clause] RETURN expression .

85 forloop_expr = repeat_control RETURN expression .

Rules and restrictions:

a) Eachexpressi on of the f or each_expr shall evaluate to an EXPRESS aggregate, entity
extent or view extent.

The iteration of the FOR expression is controlled either by the repeat_control (1ISO 10303-11;1994
clause 13.9) or foreach_expr.

The EACH language element identifies an iterator variable. The IN language element identifies the
EXPRESS aggregate or entity extent over which iteration shall occur. In each iteration of the loop an
element of the aggregate is assigned to thisiterator. The elements are selected in order proceeding from
LOINDEX to HIINDEX (1SO 10303-11;1994 clauses 15.17 and 15.11).

The RETURN language element specifies an expression for each element during the iteration. All pro-
cessed elements together build the result aggregate data type which is returned to the target attribute.

42

| SO/CD 10303-14:2000(E)

The optional wher e_cl ause specifies an expression that shall return a LOGICAL or indeterminate
value. The expression following the RETURN language element is only evaluated when the
where _clause returns TRUE.

EXAMPLE 1 — FOR expression.

(* Source schema *)

ENTI TY product _definition;
product _nanme : STRI NG
description : STRING

END_ENTI TY;
ENTI TY product _definition_nane;

name : STRI NG

of _product __definition : product_definition;
END_ENTI TY;

(* Target schema *)

ENTI TY conponent;
names : SET [0:?] OF STRI NG
product _nanme : STRING
description : STRING

END_ENTI TY;

In this example, the target entity conponent maps to the source entity pr oduct _defi niti on and al
instances of pr oduct _defi ni ti on_name which reference one instance of pr oduct _defi niti on
are grouped into the target attribute conrponent . nanes. Thisis specified as follows.

Mappi ng definition:

MAP component AS np : ny_product;
FROM pd : product _definition

SELECT
np. description : = pd.description;
np. product _nane : = pd. product _nane;

np. names : = FOR EACH pdn_i nst ance
IN pdn : product_definition_nane
WHERE pdn. of _product _definition : = pd
RETURN pdn_i nst ance. nane
END_MAP;

This example also shows that the scope of the FROM language element of the MAP declaration can be
extended by the FROM language element of an FOR expression within this MAP declaration. That is,
product_definition_name is not within the scope of the root entity of the FROM language element of the
MAP declaration product_definition. In this case, the FOR expression specifies the outer join operation.
That is, for each instance of product_definition a target instance of component is built independent of the
existence of instances of product_definition_name which references this product_definition. If such
instances of product_definition_name do not exist, the value of component.names is the empty set. Other-
wise, those instances (e.g. the value product_definition_name.name) are assigned to the attribute compo-
nent.names.

The RETURN language element can be nested in order to map attributes which are of type AGGRE-
GATE OF AGGREGATE.

43

| SO/CD 10303-14:2000(E)

EXAMPLE 2 — Nested FOR expression. The example 31 is extended as follows.

Sour ce schenmn:

ENTI TY product _definition;
(* as defined in Ex. 31 *)

END _ENTI TY;

ENTI TY product _definition_nane;
(* as defined in Ex. 31 *)
END_ENTI TY;

ENTI TY product_definition_val ue;
of _pdn : product_definition_naneg;
val ue : STRI NG

END _ENTI TY;

Tar get schenma:

ENTI TY conponent;
values : SET [0:?] OF SET [0:?] OF STRING
product _nanme : STRI NG
description : STRING

END_ENTI TY;

In addition to example 1, al instances of pr oduct _defi ni ti on_val ue which reference one instance
of product _defi ni ti on_nane are grouped together and are assigned to the inner aggregate of com
ponent . val ues. Thisis specified as follows.

Mappi ng definition:
MAP component AS np : ny_product;
FROM pd : product_definition;

SELECT
np. description : = pd.description;
np. product _nane : = pd. product _nane;

np. names : = FOR EACH pdn_i nstance
IN pdn : product_definition_nane;
VWHERE pdn. of _product_definition :=: pd,
RETURN FOR EACH pdv_i nst ance
IN pdv : product_definition_val ue;
WHERE pdv. of _pdn :=: pdn_instance,
RETURN pdv_i nst ance. val ue;
END_MAP

The FOR expression supports parallel iteration (i.e. iteration where two or more iterator variables are
assigned to elements of sets). During each step of the iteration loop, al the iterator variables are
assigned to the next element of the corresponding set. Thisis shown in the following example.

| SO/CD 10303-14:2000(E)

EXAMPLE 3 — Paralél iteration with the FOR expression.

Sour ce schenm:
ENTI TY persons;
firstnane : SET [0:7?] OF STRI NG
lastnane : SET [0:7?] OF STRI NG
END_ENTI TY;

Tar get schenma:
ENTI TY set_of _persons;

name : SET [0:?] OF STRING
END _ENTI TY;

It is assumed that per sons. fi rstnane[i] correspondsto per sons. | ast name[i] and that those
two values have to be concatenated and have to be assigned to set _of _per sons. nane[i].

Mappi ng specification:
MAP set _of _persons_nmap AS p : set_of _persons;
FROM p : persons;
SELECT
p. nane : = FOR EACH firstnane_value IN p.firstnane AND
EACH | ast nane_val ue I N p.|astnane
RETURN firstname_val ue + | astname_val ue;
END_MAP;
This example also shows that the FROM language element of the FOR expression is optional when it is a
subset of the FROM language element of the MAP declaration. In this example, no predicates are needed to
select specific elements of the extent which is given by the IN language element. Thus, the WHERE lan-
guage element is omitted.

If the scope of the extent of the FOR loop (as specified by the foreach_in_clause_arg e.g., the
repeat_control) is empty the FOR loop will be performed zero times.

10.6 IF expression

The if_expression is a map_attr_assgnmt_expr providing for the conditional evaluation of
map_attr_assgnmt_exprs following the pattern of the EXPRESS IF statement (ISO 10303-11;1994
clause 13.7).

Syntax:

108 if_expr = IF | ogical _expression THEN nmap_attr_assgnnt _expr [ELSE
map_attr_assgnnt _expr] END IF .

45

| SO/CD 10303-14:2000(E)

10.7 CASE expression

The case expr is a map_attr_assgnmt_expr providing for the conditiona evaluation of
map_attr_assgnmt_exprs following the pattern of the EXPRESS CA SE statement (1SO 10303-11;1994,
clause 13.4) .

Syntax:

61 case_expr = CASE selector OF { case_expr_action } [OTHERWSE ':'
map_attr_assgnm _expr] END_CASE .

58 case_expr_action = case_label { ',' case_label } '
map_attr_assgnmt _expr

EXAMPLE — CASE expression.

MAP approval _map AS a : my_approval
FROM a : approval

SELECT
a.status := CASE a.status OF
" approved’ R
"not approved’ : -1;
"indeterm ned’ : O;
OTHERW SE D2
END CASE;
END_MAP;

10.8 Forward path operator

The forward path operator (::) provides an aggregate of entity instances referenced by or contained in
attribute_ref. If the optional path_condition clause is specified, the result aggregate shall contain only
entity instances of type entity_reference or of one of its subtypes. If additionally logical _expression is
specified, the result shall only contain elements for which logical_expression evaluates to TRUE.

Syntax:
87 forward_path_qualifier = "'::' attribute_ref [path_condition]
158 path_condition = '{' extent_reference ['|"' |ogical_expression] '}’

Rules and restrictions:

a) forward_path_qualifier shall not be used in conformance class 1 conforming schema. view;

46

| SO/CD 10303-14:2000(E)

For some entity extent a, an entity reference pr oduct and an attribute of instances in the extent a,

of _product ,theexpressionresult := a::of _product{product} isequivaent to thefol-
lowing EXPRESS:
NOTE — The unnest function referenced below accepts one argument of arbitrary type (including a

nested aggregate) and returns an aggregate whose elements are non-aggregate types. e.g.
unnest([[a],[b,c],[[d]]]) returns [a,b,c,d]. See annex E for a definition of the unnest function used below.

LOCAL
result : AGGREGATE OF GENERIC : = [];
END_LOCAL;
tnmp := unnest(a);
REPEAT i 1 TO HI I NDEX(t mp);
result result + QUERY(e <* unnest(tnp[i].of _product)|
' SCHEMA_NAME. PRODUCT" I N TYPEOF(e));

END_REPEAT,;
result := unnest(result);

Theexpressionresult : = a:: x isequivaent to the EXPRESS:

result :=1];
tmp : = unnest(a);
REPEAT i := 1 TO HI | NDEX(t np);
result :=result + unnest(tnp[i].Xx);
END_REPEAT,;
result := unnest(result)

10.9 Backward path operator

The backward_path_operator (<-) provides an aggregate of entity instances using the expression on the
right side of the operator.

Syntax:
46 backward_path_qualifier = '"<-' [attribute_ref] path_condition .
158 path_condition = '{' extent_reference ['|' |ogical _expression] '}"

Rules and restrictions:
a) backward_path_qualifier shall not be used in conformance class 1 conforming schema_view;

b) attri but e_ref shal bedefined in some partial entity type of each instance of the argument

extent.
When identifier a represents an entity extent, theexpressionresul t : = a<-x{b} isequivaentto
the EXPRESS:

47

| SO/CD 10303-14:2000(E)

result :=1];
tnmp := unnest(a);
REPEAT i := 1 TO HI | NDEX(t np);
result :=result + QUERY(e <* USEDI N(tnp[i], ")
(' SCHEMA _NAME. B' I N TYPECF(e))
AND (tnmp[i] IN e.x));
END_REPEAT;

The expression a<- x isequivaent to the EXPRESS:

result :=1];
tnmp = unnest(a);
REPEAT i := 1 TO HI | NDEX(t nmp) ;
result :=result + QUERY(e <* USEDI N(tnmp[i],""') |
(' SCHEMA_NAME. B' I N TYPEOF(e)));
END_REPEAT,;
EXAMPLE —

In this example path operators are used to compute the source aggregate of an instantiation loop. The source
aggregate contains all instances of type document_file, referring to a representation_type instance with name
'digital’ and are referenced as ‘documentation_ids of a ‘product_definition_with_associated documents

instance which refersto the source 'product_definition_formation' instance.
SCHEMA docunent _schens;

ENTI TY fol der;
nane : STRI NG
END _ENTI TY;

ENTITY file;
name . STRI NG
| ocation : folder;
END _ENTI TY;
END SCHEMA;

SCHEMA_MAP exanpl e2;

TARGET docunent schemms;
SOURCE pdm schenm;

48

| SO/CD 10303-14:2000(E)

MAP docurent _map AS
fol der : folder;
files: LIST [0:?] OF file;
FROM pdf : product_definition_formation;
FOR EACH f IN
pdf <-f ormati on{product _definition_w th_associ at ed_docunent s}
: . docunent ati on_i ds{docunent _file
| representation_type.nane = "digital'}
| NDEXI NG i ;
SELECT
files[i].name := f.name;
files[i].location := folder;
fol der. name : = pdf. nane;
END_MAP;

11. Built-in functions

11.1 Extent - general function
FUNCTI ON EXTENT (R : STRING) : SET OF GENERI G

The EXTENT function returns the population of instances of the type specified by the parameter.

Parameters:

a) Risastring that contains the name of a entity datatype or view datatype. Such names are qual-
ified by the name of the schema which contains the definition of the type (SCHEMA.TYPE’).

Result: A set containing al instances of the entity data type or view data type specified in the parame-
ter. It is an error to specify as the parameter a type which is neither a view data type nor an entity data
type defined in a source schema.

12. Scope and visibility

An EXPRESS-X declaration creates an identifier that can be used to reference the declared item in
other parts of the schema_view (or in other schema_views). Some EXPRESS-X constructs implicitly
declare items, attaching identifiersto them. Anitem is said to be visible in those areas where an identi-
fier for a declared item may be referenced. An item may only be referenced where its identifier is visi-

49

| SO/CD 10303-14:2000(E)

ble. For the rules of visibility, see clause 10.2 For further information on referring to items using their
identifiers, see clause 12.

Certain EXPRESS-X items define aregion (block) of text called the scope of the item. This scope lim-
its the visibility of identifiers declared within it. Scope can be nested; that is, an EXPRESS-X item
which establishes a scope may be included within the scope of another item. There are constraints on
which items may appear within a particular EXPRESS-X item’ s scope.

For each of the items specified in table 2 below the foll owing subclauses specify the limits of the scope
defined, if any, and the visibility of the declared identifier both in general terms and with specific
details.

Table 3: Scope and identifier defining items

Item Scope Identifier
view attribute .
view . .
partition . .
schema view . .

12.1 Scoperules
The general scoperules are as defined in 1SO 10303-11:1994.

12.2 Visibility rules
The general visibility rules are as defined in 1SO 10303-11:1994.
12.3 Explicititem rules

12.3.1 Overview

The following language elements provide more detail on how the general scoping and visibility rules
apply to the various EXPRESS-X items.

12.3.2 Schema view

Visibility: A schema_view identifier isvisible to al other schema_views.

50

| SO/CD 10303-14:2000(E)

Scope: A schema view declaration defines a new scope. This scope extends from the keyword
SCHEMA_VIEW to the keyword END_SCHEMA_VIEW that terminates that schema view declara-
tion.

Declarations. The following EXPRESS-X items may declare identifiers within the scope of a
schema view declaration:

constant;

function;

procedure;
— rule;

— view.

12.3.3 View

Visibility: A view identifier is visible in the scope of the function, procedure, rule, or schema view in
which it is declared. A view identifier remains visible within inner scopes which redeclare that identi-
fier.

Scope: A view declaration defines a new scope. This scope extends from the keyword VIEW to the
keyword END_VIEW which terminates that entity declaration.

Declarations: The following EXPRESS-X items may declare identifiers within the scope of a view
declaration:

— view attribute;

— partition label.

12.3.4 View partition label

Visibility: A partition label isvisible in the scope of the view in which it is declared.

12.3.5 View attributeidentifier

Visibility: A view attribute identifier is visible in the scope of the view in which it is declared.

51

| SO/CD 10303-14:2000(E)

13. Interface specification

13.1 Overview

Interface specifications enable the reference of resources from external schemas, view_schemas and
map schemas.

13.2 Thereference language element

A REFERENCE specification enables the following items, declared in a foreign schema or
schema_view, to be visible in the current schema_view:

— View;

Constant;

Entity;

— Type;

Function;
— Procedure;

— Rule

Additionally, within a schema_map, the reference specification enables map declarations declared in a
schema_map to be visible in the current schema_map.

The REFERENCE specification identifies the name of the foreign schema, schema view or
schema_map, and optionally the names of EXPRESS or EXPRESS-X items declared therein. If there

are no names specified, al the items declared in the foreign schema or schema_view are visible within
the current schema_view.

The schema ref may be an EXPRESS-X reserved word provided that it is renamed by
resource_or_rename.

Syntax:

166 reference_cl ause = REFERENCE FROM schema_ref _or_renane [' ('
resource_or_renanme { '," resource_or_renanme } ')'] [AS(SOURCE | TAR-
GeT) 1 5

184 schema_ref _or_rename = [general _schenma_alias_id ":']
general _schema_r ef

173 resource_or_renanme = resource_ref [AS renane_id]

52

| SO/CD 10303-14:2000(E)

Rules and restrictions;

a) Within aschema view, ther esour ce_or _r enane shall not referenceanap_r ef .

EXAMPLE — This example illustrates the reference of resources from other schema. The resource
your_view_decl is referenced from the schema other_view_schema and is renamed my_view_decl for use
within this schema_view.

SCHEMA_VI EW ny_vi ew_schenmm;
REFERENCE FROM ot her _map_schema your _vi ew_decl AS ny_vi ew_decl ;
END_SCHEMA MAP;

53

| SO/CD 10303-14:2000(E)

Annex A
(normative)
Infor mation object registration

To provide for unambiguous identification of an information object in an open system, the object iden-
tifier

{ iso standard 10303 part(14) version(1) }

is assigned to this part of 1SO 10303. The meaning of this value is defined is ISO/IEC 8824-1, and is
described in SO 10303-1.

54

| SO/CD 10303-14:2000(E)

Annex B

(normative)
EXPRESS-X language syntax

This annex defines the lexical elements of the language and the grammar rules that these elements shall
obey.
NOTE — Thissyntax definition will result in ambiguous parsersif used directly. It has been written so as
to convey information regarding the use of identifiers. The interpreted identifiers define tokens that are ref-
erences to declared identifiers, and therefore should not resolve to simple_id. This requires a parser devel-

oper to enable identifier reference resolution and return the required reference token to a grammar rule
checker.

All of the grammar rules of EXPRESS specified in annex A of 1SO 10303-11:1994 are also grammar
rules of EXPRESS-X. In addition, the grammar rules specified in the remainder of this annex are gram-
mar rules of EXPRESS-X.

B.1 Tokens

The following rules specify the tokens used in EXPRESS-X. Except where explicitly stated in the syn-
tax rules, no white space or remarks shall appear within the text matched by a single syntax rule in the
following clauses.

B.1.1 Keywords

This subclause gives the rules used to represent the keywords of EXPRESS-X.

NOTE — This subclause follows the typographical convention that each keyword is represented by a syn-
tax rule whose left hand side is that keyword in uppercase.

NOTE — All the keywords of EXPRESS are aso keywords of EXPRESS-X

1 CREATE = 'create'.

2 DEPENDENT_MAP = ' dependent _map'.

3 EACH = 'each'.

4 ELSIF = "elsif'

5 END CHO CE = 'end_choi ce’

6 END CREATE = 'end_create'.

7 END _DEPENDENT_MAP = ' end_dependent _nmap'.
8 END FOR = 'end_for".

9 END MAP = 'end_nmap'.

10 END_SCHEMA MAP = 'end_schema_nap' .
11 END _SCHEMA VI EW = 'end_schema_vi ew .
12 END VIEW = 'end_view .

=
w

EXTENT = 'extent'

55

| SO/CD 10303-14:2000(E)

14 | DENTIFIED BY = "identified_by'.
15 MAP = "map'.

16 PARTITION = 'partition'.

17 SCHEMA_MAP = 'schema_map' .

18 SCHEMA VI EW = ’ schema_vi ew .

19 SOURCE = 'source'.

20 TARGET = 'target'.

21 VIEW= 'view.

B.1.2 Character classes

22 digit ='0" | "2 | 2" | "3 | "4 | '5" | ‘6 | "7 | '8 |

23 letter ="a" | 'b" | "¢ | 'd | e | "f" | "g | 'h | "i" |
LS A O O A - B B A B
v W x|y |t

24 simple_id = letter { letter | digit | '_' }

B.1.3 Interpreted identifiers

NOTE — All interpreted identifiers of EXPRESS are also interpreted in EXPRESS-X
25 instance_ref = instance_id .

26 network_ref = network_id .

27 partition_ref = partition_id .

28 schema_map_ref = schema_map_id .

29 schema_view ref = schema_view.id .

30 source_schema_ref = schema_ref

31 target_schema_ref = schema_ref

32 view attribute ref = view attribute_id .
33 viewref = view.id .

B.2 Grammar rules

pe .
]

type .

34 actual _paraneter _list ="' (' paraneter { ',' paraneter } ')’

35 add like op ="+ | "-'" | OR| XOR.

36 aggregate_initializer ='[" [elerent { '," element }] ']’

37 aggregate_source = sinple_expression .

38 aggregate_type = AGCREGATE [':' type_label] OF paraneter_type .
39 aggregation_types = array_type | bag_ type | list_type | set_ty
40 algorithmhead = { declaration } [constant_decl] [|ocal _decl
41 array_type = ARRAY bound_spec OF [OPTIONAL] [UNITQUE] base_
42 assignnment_stnt = general _ref { qualifier } ':=" expression ';
43 backward_path_qualifier = '<-' [Jattribute_ref] path_condition .

44 bag_type = BAG [bound_spec] OF base_type .
45 base_type = aggregation_types | sinple_types | named_types .

56

46
47
48
49
50
51
52

53
54
55

56

57
58

59
60
61

62
63
64

65
66

67

68

69
70
71

72
73
74

75
76

| SO/CD 10303-14:2000(E)

binary _type = BINARY [wi dth_spec]
bool ean_type = BOOLEAN

bound_1 = nuneric_expression

bound_2 = nuneric_expression

bound_spec = '[' bound_1 ':' bound_2 ']’
built_in_constant = CONST_E | PI | SELF | "7

built_in function = ABS | ACOS | ASIN | ATAN | BLENGTH | COS | EXI STS
| extent | EXP | FORMAT | HIBOUND | HIINDEX | LENGTH | LOBOUND | LO N-
DEX | LOG| LOG2 | LOGLO | NVL | ODD | ROLESOF | SIN| SIZEOF | SQRT |
TAN | TYPEOF | USEDIN | VALUE | VALUE IN | VALUE_UNI QUE .

built_in_procedure = |INSERT | REMOVE .

case_action = case_label { ',' case_label } ':' stnt

case_expr = CASE selector OF { case_expr_action } [OTHERWSE ':"'
map_attr_assgnm _expr] END_CASE .

case_expr_action = case_label { ',' case_label } ":'
map_attr_assgnnt _expr ;'

case_| abel = expression .

case_stnt = CASE selector OF { case_action } [OTHERWSE ':"' stmt]
END_CASE ' ;'

conpound_stnt = BEG N stnt { stnt } END ';"

constant _id base_type ': =" expression ';
CONSTANT constant _body { constant _body } END _CONSTANT

const ant _body
const ant _decl

constant _factor = built_in_constant | constant_ref

constant _id = sinple_id .

create_map_decl = CREATE instance_id ':' target_entity reference ';"' |
WHERE | ogi cal _expression ';'] map_attri bute_declaration {

map_attri bute_decl aration } END CREATE ';'

declaration = function_decl | procedure_dec

dependent _map_decl = DEPENDENT_MAP map_id AS target_parameter ';' {
target _parameter ';' } [map_subtype_of clause] dep_map_partition {
dep_map_partition } END _DEPENDENT_MAP ' ;'

dep_bi ndi ng_decl = dep_from cl ause [where_cl ause]

[identified_by clause]

dep_fromcl ause = FROM dep_source_paraneter ';' { dep_source_paramneter
o

dep_map_decl _body = dep_bindi ng_decl nmap_project_cl ause
dep_map_partition = [PARTITION partition_id ':'] dep_map_decl _body
dep_source_paranmeter = source_paraneter_id { ',' source_paraneter_id}
"' (sinple_types | type_reference)

domain_rule = label ':' |ogical _expression .

el ement = expression [':' repetition]

entity _constructor = entity ref '"(' [expression { ',' expression }]

l)l .

entity_id = sinple_id .

entity instantiation_loop = FOR instantiation_|loop_control ';'
map_proj ect _cl ause

57

| SO/CD 10303-14:2000(E)

77

78
79
80
81
82
83
84

85
86

87
88
89
90

91

92

93
94

95

96

97

98

99
100
101
102
103
104
105
106
107

108

109

58

entity reference = [(source_scherma_ref | target_schema_ref
schema_ref) ".'] entity_ref

enuneration_reference = [type_ref '.'] enuneration_ref

escape_stm = ESCAPE ';'

expression = sinple_expression [rel _op_extended sinpl e_expression]
expression_or_wld = expression | '_'

extent _reference = source_entity reference | view reference

factor = sinple_factor ['**' sinple_factor]

foreach_expr = EACH variable_id IN expression { AND variable_id IN
expression } [where_clause]| RETURN expression .

forl oop_expr = repeat_control RETURN expression

formal _parameter = paraneter_id { ',' paraneter_id } ':'

par anet er _type

forward_path_qualifier = "::" attribute_ref [path_condition]
for_expr = FOR (foreach_expr | forloop_expr)

fromclause = FROM source_paraneter ';'{ source_paraneter ';'}
function_call = (built_in_function | function_ref) [

actual _paraneter_list]

function_decl = function_head [algorithmhead] stm { stnt }

END_FUNCTI ON ' ;°

function_head = FUNCTION function_id ['(" formal _paraneter { ';
formal _parameter } ")'] "'

function_id = sinple_id .

parameter _type ';

general i zed_types = aggregate_type | general _aggregation_types
generic_type

general _aggregation_types = general _array_type | general _bag_type
general _list_type | general _set_type

general _array_type = ARRAY [bound_spec] OF [OPTIONAL] [UN QUE]
par anet er _type
general _attribute_qualifier ="." (attribute_ref | view attribute_ref

) .
general _bag_type = BAG [bound_spec] OF paraneter_type

general _list_type = LIST [bound_spec] OF [UNIQUE] paraneter_type
general _or_map_call = general _ref ['@ map_call]

general _ref = paraneter_ref | variable_ref

general _schema_alias_id = schena_id | schema_map_id | schema_view.id .
general _schema_ref = schema_ref | schema_map_ref | schema_viw ref
general _set _type = SET [bound_spec] OF paraneter_type

generic_type = GENERIC [':' type_l abel]

group_qualifier ="'\" entity_ref

identified_by_clause = |DENTIFIED BY expression { ',' expression} ';
if_expr = |1F |ogical _expression THEN nmap_attr_assgnnt _expr [ELSE
map_attr_assgnnt _expr] END IF .

if_stnt = |IF logical _expression THEN stnt { stnt } [ELSE stm { stnt
} 1 ENDIF ;"

110
111

112
113
114
115
116

117

118
119

120
121
122
123
124
125
126

127
128

129
130
131
132

133
134

135

136

137
138

139

| SO/CD 10303-14:2000(E)

i ncrement = nuneric_expression

i ncrement_control = variable_id ':=" bound_1 TO bound_2 [BY increnent
] .

i ndex = nuneric_expression

i ndex_1 = index .

i ndex_2 = index .

i ndex_qualifier ='['" index_1 [':' index_2] ']’
instantiation_foreach_control = EACH variable_id IN

source_attribute_reference | NDEXING variable_id { variable_id IN
source_attribute_reference | NDEXING variable_id }

instantiation_|loop_control = instantiation_foreach_control

repeat _contro

i nteger_type = | NTEGER .

interval = "{" interval _|owinterval _op interval _iteminterval _op

i nterval _high "}’

i nterval _high = sinple_expression

interval _item = sinple_expression

interval | ow = sinple_expression

interval _op = "'<' | '<=

| abel = simple_id .

list _type = LIST [bound_spec] OF [UNNQUE] base_type

literal = binary_ literal | integer_literal | logical _literal

real _literal | string_litera

| ocal _decl = LOCAL |ocal _variable { local _variable } END LOCAL ';'

| ocal _variable = variable_id { ', variable_id } ':' paraneter_type
[':=" expression] ';'

| ogi cal _expression = expression .

logical _literal = FALSE | TRUE | UNKNOWN .

| ogi cal _type = LOd CAL .

map_attri bute_declaration = [target_paraneter_ref [index_qualifier]
[group_qualifier] '.'] attribute_ref [index_qualifier] ":=
map_attr_assgnnt _expr ;'

map_attr_assgnmt _expr = expression | if_expr | case_expr | for_expr
map_call = map_ref [partition_qualification] '(' expression_or_wld
{ '"," expression_or_wld} ")’

map_decl = MAP map_id AS target_parameter ';'{ target_paraneter ';"'} (

map_subt ype_of cl ause subtype_partition_header map_decl _body {
subtype_partition_header [map_decl _body] }) | (
supertype_partition_header [map_decl _body] {
supertype_partition_header map_decl _body }) END MAP ' ;'

map_decl _body = (entity_instantiation_|loop {

entity_ instantiation_loop }) | map_project_clause | (RETURN expres-
sion ";").

map_id = sinmple_id .

map_proj ect_clause = SELECT map_attribute_declaration {
map_attri bute_declaration }
map_ref = map_id .

59

| SO/CD 10303-14:2000(E)

140
141
142
143
144
145
146
147

148
149
150
151
152
153
154
155
156
157
158

159

160

161
162

163
164
165

166

167
168
169

170

171
172
173

60

map_reference = [schema_map_ref '.'] map_ref

map_subtype_of clause = SUBTYPE OF ' (' map_reference ")" ';'
multiplication_like_op ="*" | '/" | DOIV| MOD| AND | '||®
named_types = entity_ref | type_ref | viewref

null _stm =";" .

nunber _type = NUMBER .

numeri c_expressi on = sinpl e_expression

one_of = ONEOF ' (' supertype_expression { ',' supertype_expression }
vy

parameter = expression

parameter_id = sinple_id .

paranmeter_type = generalized_types | naned_types | sinple_types .
partition_id = sinple_id .

partition_qualification ="'\" partition_ref

path_condition = '{' extent_reference ['|' |ogical _expression] '}’

path_qualifier = forward_path_qualifier | backward_path_qualifier
popul ation = entity_ref

preci sion_spec = numeric_expression .

primary = literal | (qualifiable_factor { qualifier })
procedure_call _stnt = (built_in_procedure | procedure_ref) [

actual _paraneter_list] ';'
procedure_decl = procedure_head [algorithmhead] { stnt }
END_PROCEDURE ' ;'

procedure_head = PROCEDURE procedure_id ['(" [VAR] formal _paraneter

{ '";" [VAR] formal _paraneter } ")'] ';'

procedure_id = sinple_id .

qualifiable_factor = attribute_ref | constant_factor | function_call |
popul ation | general _or_map_call | view.call | view attribute_ref
qualifier = general _attribute_qualifier | group_qualifier
index_qualifier | viewattribute_qualifier | path_qualifier
guery_expression = QUERY ' (' variable_id ' <* ' aggregate_source '|’

| ogi cal _expression ')’
real _type = REAL ['(' precision_spec ')']

reference_cl ause = REFERENCE FROM schema_ref_or_renane [' ('
resource_or_renanme { ',' resource_or_renanme } ')'] [AS(SOURCE | TAR-
GET)] '

rel op="'< | " >" | '<= | " >=" | <> = it | =
rel _op_extended = rel_op | IN| LIKE

rename_id = constant_id | entity id | function_id | procedure_id
type_id .

repeat _control = [increnent_control] [while_control] [

until _control]

repeat _stnt = REPEAT repeat_control ';' stm { stm } END_REPEAT ';’
repetition = numeric_expression .

resource_or_rename = resource_ref [AS renane_id]

174

175
176

177

178
179
180

181

182

183
184

185

186

187

188
189
190
191
192

193

194
195

196
197
198
199

200
201
202
203

| SO/CD 10303-14:2000(E)

resource_ref = constant_ref | entity_ref | function_ref
procedure_ref | type_ref | viewref | map_ref

return_stnmt = RETURN ['(' expression ')'] ';'

rule_decl = rule_head [algorithmhead] { stnt } where_cl ause

END RULE ' ;'

rule_head = RULE rule_id FOR ' (' entity_ref { '," entity_ref } ")"'";"’

rule_id = sinple_id .

schema_id = sinmple_id .

schema_map_body_el enment = function_decl | procedure_decl | view decl
map_decl | dependent _nmap_decl | create_map_decl | rul e_dec
schema_map_body_el enent _|ist = schema_nmap_body_el ement {
schema_map_body_el enent }

schema_map_decl = SCHEMA MAP schema_map_id reference_cl ause {

reference_clause } [constant_decl] schenma_nap_body_el ement _|i st
END_SCHEMA MAP ' ;'

schema_map_id = sinple_id .

schema_ref_or_renane = [general _scherma_alias_id ':']
gener al _schema_r ef

schema_vi ew_body_el enent = function_decl | procedure_decl | view decl
| rul e_decl

schema_vi ew_body_el enent _|ist = schena_view body_el ement {

schema_vi ew_body_el ement }

schema_vi ew_decl = SCHEMA VIEW schema_view_ id { reference_cl ause } [
constant _decl] schema_vi ew body_elenent |ist END _SCHEMA VIEW' ;'
schema_view id = sinmple_id .

sel ector = expression .

set _type = SET [bound_spec] OF base_type

sinpl e_expression = term{ add_like_ op term}

sinple_factor = aggregate_initializer | entity_constructor
enuneration_reference | interval | query_expression | ([unary_op]
("(' expression ') | primary)) | case_expr | for_expr

sinple_types = binary_type | boolean_type | integer_type
| ogi cal _type | nunber_type | real type | string_type

skip_stm = SKIP"';"

source_attribute_reference = parameter_ref '.' (attribute_ref
view attribute_ref)

source_entity reference = entity_reference

source_parameter = source_paraneter_id ':' extent_reference
source_parameter_id = paraneter_id .

stm = assignnent_stnmt | case_stm | compound_stnt | escape_stnt

if_stmt | null_stnt | procedure_call _stnt | repeat_stnt | return_stm |
ski p_stm

string_literal = sinple_string literal | encoded_string litera
string_type = STRING [w dth_spec]
subtype_constraint = OF '(' supertype_expression ')’

subtype_partition_header = [PARTITION partition_id ';'] where_cl ause .

61

| SO/CD 10303-14:2000(E)

204
205
206

207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222

223
224

225

226

227
228

229

230

231
232
233
234

62

supertype_expression = supertype_factor { ANDOR supertype_factor }
supertype_factor = supertype_term{ AND supertype_term}
supertype_partition_header = [PARTITION partition_id ";"'
[where _clause] [identified_by_ clause].

supertype_rule = [ABSTRACT] SUPERTYPE [subtype_constraint]

] fromcl ause

supertype_term= entity_ref | one_of | '(' supertype_expression ')’

syntax = schenma_map_decl | schema_vi ew _decl

target_entity reference = entity_reference { '& entity_reference }

target _parameter = [target_paraneter_id { ',' target_paraneter_id }
":'"] [AGGREGATE [bound_spec] OF] target_entity _reference

target _parameter_id = paraneter_id .

target _parameter_ref = target_paraneter_id .

term= factor { nultiplication_like_op factor }
type_id = sinple_id .

type_|l abel = type_label _id | type_label ref

type_label id = sinple_id .

type_reference = [schema_ref '.'] type_ref

unary_op = '+ | "-'" | NOT .

until _control = UNTIL | ogical _expression

variable_id = sinmple_id .

view attribute decl = view attribute_id ":" [OPTIONAL] [
source_schema_ref '.'] base_type ':=" expression ';'

view attribute id = sinple_id .

view attr_decl _stnt_list = view attribute_decl { view attribute_decl }
view call = viewreference [partition_qualification] ' ('
expression_or_ wild { '," expression_or_wild} ")’

view decl = VIEWview.id ':' base_type [supertype_rule] ";" (

vi ew_subt ype_of _cl ause subtype_partition_header view project_clause {
subtype_partition_header view project_clause }) | (
supertype_partition_header view project_clause {
supertype_partition_header view project_clause }) END VIEW" ;'
viewid = sinple_id .

vi ew_project_clause = (SELECT view attr_decl _stnt_list) | (RETURN
expression)

view reference = [(schema_map_ref | schema_viewref) '.'] view_ref
vi ew_subtype_of _clause = SUBTYPE OF '(' view reference { ',

view reference } ')’

where_clause = WHERE domein_rule ';'{ domain_rule ";"'}

while_control = WH LE | ogi cal _expression

wi dth = nuneric_expression .

wi dth_spec = '(' width ")" [FIXED]

B.3

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

133
81
82

Crossreferencelisting

actual _parameter_list
add_li ke_op
aggregate_initializer
aggregat e_source
aggregate_type
aggregati on_types

al gorithm head
array_type

assi gnment _stnt
backward_pat h_qualifier
bag_type

base_type

bi nary_type

bool ean_t ype
bound_1

bound_2

bound_spec

built_i n_const ant
built_in_function
built_in_procedure
case_action
case_expr
case_expr_action
case_| abel

case_stnt
compound_st nt
const ant _body
const ant _dec
constant _factor
constant _id
create_map_dec

decl arati on
dependent _map_dec
dep_bi ndi ng_dec
dep_fromcl ause
dep_map_decl _body
dep_map_partition
dep_sour ce_par anet er
domai n_rul e

el enent
entity_constructor
entity_id

entity_instantiation_| oop
entity_reference
enuneration_reference
escape_stnt

expression

136 148 175 189 192 222 228
expression_or_wld

extent _reference

| SO/CD 10303-14:2000(E)

90 158
191

192

164

94

45

91 159 176
39

199

154

39

41 44 60 125 190 222 226
193

193

50 111
50 111
41 44 96 98 99 104 125 190 211
62

90

158

58

133 192
55

54 56
199

199

61

40 182 187
162

60 169
180

40

180

69

67

70

66

68

231

36

192

169

136

196 210
192

199

42 57 60 73 74 81 84 85 107 128 129

134 225
153 197

63

| SO/CD 10303-14:2000(E)

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

64

factor

f oreach_expr

forl oop_expr

f ormal _par aneter
forward_path_qualifier
for _expr

fromcl ause
function_cal
function_dec
function_head
function_id
general i zed_types
general _aggregation_types
general _array_type
general _attribute_qualifier
general _bag_type
general _list_type
general _or_map_cal
general _ref

general _schema_alias_id
general _schema_r ef
general _set _type
generic_type
group_qualifier

dentified_by_clause
f_expr

f_stm

ncr enent

ncrement _contro
ndex

ndex_1

ndex_2
ndex_qualifier
nstantiati on_foreach_contro
nstantiati on_|l oop_contro
nt eger _type

nt er val

nt erval _hi gh
nterval _item
nterval _I ow

nterval _op

abel

i st_type

iteral

ocal _decl

ocal _variabl e

ogi cal _expression
ogical litera

ogi cal _type

map_attri bute_decl aration
map_attr_assgnmt _expr
map_cal

214

88

88

92 160
154

133 192
206

162

65 180 185
91

92 169
150

94

95

163

95

95

162

42 100
184

184

95

94

132 163
67 206
133

199

111

170

113 114
115

115

132 163
117

76

193

192

119

119

119

119

72

39

157

40

127

64 72 108 109 153 164 220 232
126

193

64 138
55 56 108 132
100

| SO/CD 10303-14:2000(E)

135 map_decl | 180

136 map_decl _body | 135

137 map_id | 66 135 139
138 map_proj ect _cl ause | 69 76 136
139 map_ref | 134 140 174
140 map_reference | 141

141 map_subtype_of cl ause | 66 135

142 multiplication_like_op | 214

143 named_t ypes | 45 150

144 nul |l _stnt | 199

145 nunber _type | 193

146 numeri c_expression | 48 49 110 112 156 172 233
147 one_of | 208

148 parameter | 34

149 parameter_id | 86 198 212
150 paraneter_type | 38 86 92 96 98 99 104 128
151 partition_id | 70 203 206
152 partition_qualification | 134 225
153 path_condition | 43 87

154 path_qualifier | 163

155 popul ation | 162

156 precision_spec | 165

157 primary | 192

158 procedure_call _stnt | 199

159 procedure_decl | 65 180 185
160 procedure_head | 159

161 procedure_id | 160 169
162 qualifiable_factor | 157

163 qualifier | 42 157

164 query_expression | 192

165 real _type | 193

166 reference_cl ause | 182 187
167 rel _op | 168

168 rel _op_extended | 80

169 renanme_i d | 173

170 repeat _control | 85 117 171
171 repeat _stnt | 199

172 repetition | 73

173 resource_or_renane | 166

174 resource_ref | 173

175 return_stnt | 199

176 rul e_decl | 180 185
177 rul e_head | 176

178 rule_id | 177

179 schema_i d | 102

180 schema_map_body_el enent | 181

181 schema_nmap_body_el ement _|i st | 182

182 schema_map_decl | 209

183 schema_map_i d | 102 182
184 schema_ref _or_renane | 166

185 schema_vi ew_body_el enent | 186

186 schema_vi ew_body_el enent _|i st | 187

65

| SO/CD 10303-14:2000(E)

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

66

schema_vi ew_decl
schema_vi ew_i d

sel ect or

set _type

si npl e_expressi on

si npl e_factor

si npl e_types

skip_stm
source_attribute_reference
source_entity_reference
sour ce_par anet er
source_parameter_id

stm
string_literal
string_type

subt ype_constrai nt
subtype_partition_header
supertype_expression
supertype_factor
supertype_partition_header
supertype_rul e
supertype_term

synt ax

target _entity_reference
target _paraneter

target _paraneter_id
target _paraneter _ref
term

type_id

type_I abel

type_l abel _id
type_reference

unary_op

until _contro
variable_id

view attribute_dec
view attribute_id

view attr_decl _stnt_I|ist
vi ew_cal |

vi ew_decl

view id

vi ew_proj ect _cl ause

vi ew_reference

vi ew_subt ype_of _cl ause
wher e_cl ause

whil e_contro

wi dt h

wi dt h_spec

209

102 187

55 58

39

37 80 120 121 122 146
83

45 71 150
199

116

82

89

71 197

54 58 59 91 109 159 171 176
126

193

207

135 226

147 202 208
204

135 226

226

205

64 211

66 135

211 213
132

191

169

38 105

216

71

192

170

84 111 116 128 164
224

222

228

162

180 185
226

226

82 225 230
226

67 84 176 203 206
170

234

46 201

| SO/CD 10303-14:2000(E)

Annex C

(normative)
EXPRESS-X to EXPRESS Tranformation Algorithm

This annex describes how a collection of view declarations may be transformed into a collection of
EXPRESS entity declarations suitable for representing the results of an EXPRESS-X execution. The
transformation is described as an algorithm taking the text of aview declaration as input and producing
the text of an entity declaration as output. The algorithm is given here for specification purposes only,
not to prescribe a particular implementation.

The transformed entities are assumed to exist in auniquely named schema, into which all necessary for-
eign declarations have been interfaced.
Algorithm:

a) If the view declaration is a SELECT view (i.e., does not define any view attributes), skip the
declaration.

b) Change the keyword VIEW to ENTITY.

c) Delete entirely any FROM ,WHERE, and/or IDENTIFIED_BY clauses. Delete only WHERE
clauses in the header; do not delete constraint where clauses.

d) Delete the keyword SELECT.

e) If the view declaration contains partitions, delete entirely all but the first partition declaration,
and delete the keyword PARTITION and the partition identifier (if any) from the first partition
declaration.

f) Delete the assignment operator and expression for each view attribute.
g) Changethe keyword END_VIEW to END_ENTITY.

67

| SO/CD 10303-14:2000(E)

EXAMPLE 4 —

VI EW a ABSTRACT SUPERTYPE;
PARTI TI ON one:
FROM b: one, c:two

VWHERE condl
cond2;
SELECT
X : attrl := expressionl
y : attr2 := expression2;

PARTI TI ON t wo:
FROM d:two, e:three

WHERE cond3;
cond4;
SELECT
X : attrl := expression3;
y : attr2 := expression4;
END_VI EW

is transformed into the following EXPRESS entity declaration:

ENTI TY a ABSTRACT SUPERTYPE;
X . attrl;
y . attr?2;

END ENTI TY;

EXAMPLES —

VIEWb SUBTYPE OF (a);
PARTI TI ON one:
VWHERE cond5;
SELECT

z : attr3 := expressionb;
PARTI TI ON t wo:
VWHERE cond6;
SELECT

z : attr3 := expressionG;
WHERE

WR2 : rul e_expression2;
END_VI EW

is transformed into the following EXPRESS entity declaration:

ENTITY b SUBTYPE OF (a);

z . attr3;
WHERE

WR2 : rul es_expressionz;
END _ENTI TY;

68

| SO/CD 10303-14:2000(E)

Annex D
(informative)
I mplementation consider ations

D.1 Push mapping

An implementation shall be said to be a push mapping implementation if it meets all of the following
criteria:

— The mapping engine accepts one or more source data sets, and produces one or more output data
sets.

— The output data sets are derived from the input data sets by the execution and evaluation of all of
the VIEW and MAP declarations.

— Every instance in the source data sets is mapped as specified in the mapping schema into the out-
put data sets.

D.2 Pull mapping

An implementation shall be said to be a pull mapping implementation if it meets all of the following
criteria:

— The mapping engine accepts one or more source data sets.

— Specified target data instances, and only those specified, are derived on demand from the input
data sets by the execution and evaluation of the appropriate VIEW or MAP declarations.

NOTE — This part of 1SO 10303 does not define how VIEW / MAP declarations are selected for pull
mapping.

D.3 Support of constraint checking

An implementation shall be said to support constraint checking if it implements the concepts described
in clause 9.6 of 1SO 10303-11:1994 against entity instances in target populations and against view
instances in the view extents.

NOTE — The evaluation of constraints has no effect on execution.
Propagation of updates is not possible in situations where any of the following hold:
— Theview / target entity is derived from / mapped to two or more source entities by applying ajoin

operation. (For example, the view / target entity per son_i n_dept corresponds to the source enti-
ties person and departnent where the join condition person.id = depart-

69

| SO/CD 10303-14:2000(E)

nment . per son_i d evaluatesto true.)

— Duplicates (with respect to value equivalence of attributes) which exist in the source data are elim-
inated in the view / target data.

— View / target attributes are derived from / mapped to source schema elements by applying mathe-
matical expressions that are not mathematically invertible.

— Theview / target schema defines additional subtypes which do not exist in the source schema(s).

— Subtypes which are defined in the source schema(s) are projected (i.e., not contained) in the view /
target schema.

— The sort order of source attributes of type AGGREGATE is eliminated in the view / target schema.

— Duplicates (with respect to value equivalence) of elements of source attributes of type AGGRE-
GATE are eliminated in the view / target schema.

— A single source entity corresponds to a network of interconnected view / target entities (by rela-
tionships or equivalence of attribute values).

1. Thelatter kind of relationship is comparable to primary key - foreign key relationships in the relational
data model.

70

| SO/CD 10303-14:2000(E)

Annex E
(informative)
Path operator reference functions

The following implements unnest, an EXPRESS function referred to in clause 10.8 and clause 10.9.

FUNCTI ON unnest(src : GENERI C) : AGGREGATE OF GENERI C
LOCAL

result : AGGREGATE OF GENERIC : = [];
tmp @ AGCREGATE OF GENERI C;

END_LOCAL;
IF ['LIST, "BAG, 'SET', 'ARRAY', 'AGGREGATE'] IN
TYPEOF(src)
THEN
REPEAT i := 1 TO HI I NDEX(src)

IF ['LIST", 'BAG, 'SET', 'ARRAY', 'AGGREGATE']
* TYPEOF(src[i]) > O

THEN -- aggregate type el enent
tmp := unnest(src[i]);
REPEAT j := 1 TO HI | NDEX(t np);
result :=result + tnp[i];
END_REPEAT,;
ELSE

| F SIZEOF([' STRING , ' BINARY', 'BOOLEAN , 'NUMBER , ' BOOLEAN]
* TYPEOF(src[i])) = O

THEN -- entity instance el enent
result :=result + srcl[i];
END_I F;
END_I F;
END_REPEAT,;
ELSE

| F SIZEOF([' STRING , 'BI NARY', 'BOCLEAN , 'NUMBER , ' BOOLEAN]
* TYPEOF(src)) =0

THEN -- entity instance
result := [src];
END_I F;
END_I F;

RETURN (result);
END_FUNCTI ON;

Bibliography

EXPRESS-V language (1SO TC184/SC4/WG5 N251).

71

| SO/CD 10303-14:2000(E)

EXPRESS-M language (1SO TC184/SC4/WG5 N243).

BRITTY language.

Wirth, Niklaus, ” What can we do about the unnecessary diversity of notations for syntactic defini-
tions?,” Communications of the ACM, November 1977, v. 20, no. 11, p. 822.

72

| SO/CD 10303-14:2000(E)

I ndex

e L] 0T0 1= (17 o) USSP PP 22
BALTTDULES (VIBW) ettt ettt ettt b e bt e et et b e nrenns 16
backward Path OPEFEIONc.oiiiiiiie ettt sre e 47
DINING EXEIENL ...t b ettt b b e ens 3
DINAING INSLANCE ...ttt b b e ens 3
DINGING PrOCESS ..ottt bbbt st et e e sb et et nbe e 11
CASE EXPIESSION ..ottt st b et b e bbbt bt bt ae e e e et e nnenre s 45
COMPIEX ENLITY ABLATYPES ..ottt bbbttt e b e s 30
CONFOMMEINCE CIBSSESeiuieueeiieiestist sttt ettt ettt b bt b et e e b e b e s b e b bt e bt e e e s et et e beneeene e 5
CONSEANT AECIAILION ..ottt bbbt bt ettt b e e nns 35
CrEale AECIAIALIONoviviieeiieiee ettt bbbt e et st be e nns 34
(01 1< 10 1= 018 1 0= RSP RS PP 31
EQUIVAIENCE CLASSES ...t bbb b e bt e et st beneenns 14
EXPHCIT DINAING ...t 37
eXPliCit DINAING OPEIELOToeiiiiiiteeee e 37
o1 £=55 0] USSP PP 36
EXTENT FUNCHION .ottt bbbttt e 49
FOR EXPIESSION ...c.veiuieiieieeteste sttt ettt bbbttt e e b et e besb e bt e bt e st e e e s et e nb e benee e b e 41
FOR TEPEAL ...ttt ettt e e s b e an e s e e s b e e e e s an e s b e e b e ennenreenneennens 23
FOREACH .ttt bbb bt bbbt et e s et et et e e b 24
FOrward Path OPEIAONooiiiieieieeeeeee et b e 46
FUNCLION AECIAIALTION ...ttt 35
([0 L= g LN 1= o] o PP SUS RSP URURPRPRN 14
L0115 T o TSP PP 45
INSEANTIBLION PIOCESSviueeeetesiestesteeteeeee et e e et bbbttt e e et e st e sbe s b e sbeeseene e e e e e nseneesbesrenreas 14
L L= =" PP URPRPSPRPPON 51
[EVEIS OF CHECKING ... 4

73

| SO/CD 10303-14:2000(E)

L0172 0 PP PP PP 321
L gT= o J o7z | USSR PTU PPN 39
MBP EVBIUBLION ...ttt e bbb b bt bt e st et e e e e e b e b e b e nnenbenne s 22
p0= o 1= = X o o TSSO PRPRURPR 22
MBP RETURN ..ottt bbbttt et e benbesnenneas 22
MBPPING ENGINE <.ttt ettt e st e b e st e e st e st e e e e e e e besaeebeebesaeeae e st ene e s e s e nbenbesbeneenns 5
NELWOTK MEPPING .ttt e e e et e b e b e sae bt ss e e st e se e e e s e b e b e seesbenbenreens 3
OPEELON PIECEOEICE ...ttt sttt ettt ettt bbb e b bt bt e st e et e e e e et et et e nbeneesbenneas 36
partial DINAING Callcc.oiiieee e 41
PAIITIONS (CONSLAML)veviitiriieiieieie ettt sttt ettt b e bt bt se e e e e b e be e e saesbenneas 18
(82 NE Lo g (7=) IR SOOI 22,25
PAITITIONS (VIEW) .ttt b et st b e bt bt st e e e e e e e b e b e nbennenbenneas 17
PELN OPEFGLEONS ...ttt b bbbt s et e bbb e nrennenne s 46
ProCeAUIE AECIAIELIONc.eiueeeieieieie ettt bbbttt sbesaenbenae s 35
qualified DINAING EXIENTcooiieieeeee et b e 3,12
=5 AT o BT o0 SR PP PRPR 8
FEEUITI VIBW ..ttt h e et e b e b e b s bbbt e bt et e e et e b e b e nbenrenbenne s 18
FUIE AECIAIEHION ...ttt bbbttt et e b nnenbenneas 35
SCNEIMEBL IMAD ...ttt bttt et e et be b nresnenne s 33
S0 1 0= Y S 32
< [ot Lo g e] = g - TSP PPV 3
SOUMCE ABEASEL ...ttt sttt b ettt e e e e e e bt b e bt e bt bt e s e e e e e b et et e et e nreene e 3
S U0 A 1 | PP 3
ST 014V 01X (117) USSP PP 26
SUDLYPE (VIEW) ettt sttt bbbt bt bt bt st et e s et e b et e st e benaeens 19
SUPENLYPE CONSITAIME ...ttt sttt e et sb ettt b e b s se et e e e s et et et e benbesnesbenneas 21
)Y 1= PN 54
SYNLAX CrOSS FEFEIEINCEeiiieeeeeie ettt bbbttt e bbb e b e saesbenne s 62
LE= 0 = N0 = 2= = TSP PPPRR 3

74

| SO/CD 10303-14:2000(E)

A= 3,16
A=V o S 37
VIEW TBEA SEL ...ttt bbbttt bt bbbt h e st et n e e b nne s 3
(LTS T A 0 F= =1 o= PSP S ST TOPRTRPRN 8
VIEW dBLATYPE INSIANCE ...ttt sttt b et b ettt e e b naesee b i 3
VEEW EXEENT ...ttt bbb b bt h e e e e e b e b e s b e e bt e bt eb e e bt e ae et et et e e e 3

75

